	Class 11 Conic Section
Q.1)	Find the equation of the ellipse whose vertices ($\pm 6,0$) and foci ($\pm 4,0$).
Sol.1)	Comparing foci $(\pm 4,0)$ with ($\pm a e, 0$) We have, $a e=4$ Comparing vertices ($\pm 6,0$) with ($\pm a, 0$) We have $a=6$ Now, $e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$ $\Rightarrow a e=\sqrt{a^{2}-b^{2}}$ $\Rightarrow 4=\sqrt{36-b^{2}}$ Squaring $\begin{aligned} & 16=36-b^{2} \\ & b^{2}=20 \end{aligned}$ Now, equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ $\Rightarrow \frac{x^{2}}{36}+\frac{y^{2}}{16 a}=1$
Q.2)	Find equation of ellipse whose length of major axis is 26 and foci ($\pm 5,0$).
Sol.2)	Comparing foci $(\pm 5,0)$ with ($\pm a e, a$) We have $a e=5$ And major axis with $2 a$ $\begin{aligned} & \Rightarrow 2 a=26 \\ & \Rightarrow a=13 \end{aligned}$ $\text { Now, } e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$ $\begin{aligned} & \Rightarrow a e=\sqrt{a^{2}-b^{2}} \\ & \Rightarrow 5=\sqrt{169-b^{2}} \\ & \Rightarrow 25=169-b^{2} \\ & \Rightarrow b^{2}=144 \end{aligned}$ Equation of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ $\Rightarrow \frac{x^{2}}{169}+\frac{y^{2}}{144}=1$ ans.
Q.3)	Find the equation of the ellipse major axis on the y-axis and passes through the point $(3,2)$ and $(1,6)$.
Sol.3)	Let the equation of the ellipse is $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{b^{2}}=1$ $(3,2)$ lies on ellipse $\begin{align*} & \therefore \frac{9}{a^{2}}+\frac{4}{b^{2}}=1 \\ & \Rightarrow 9 b^{2}+4 a^{2}=a^{2} b^{2} \tag{i} \end{align*}$ $(1,6)$ lies on ellipse $\begin{align*} & \frac{1}{a^{2}}+\frac{36}{b^{2}}=1 \\ & \Rightarrow b^{2}+36 a^{2}=a^{2} b^{2} \tag{ii} \end{align*}$ Solving (i) and (ii) $\begin{aligned} & 9 b^{2}+4 a^{2}=a^{2} b^{2} \\ & -\left(9 b^{2}+324 a^{2}\right)=-\left(9 a^{2} b^{2}\right) \\ & -320 a^{2}=-8 a^{2} b^{2} \\ & b^{2}=40 \text { put in equation (i) } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & 360+4 a^{2}=40 a^{2} \\ & \Rightarrow 360=36 a^{2} \\ & \Rightarrow a^{2}=10 \end{aligned}$ \therefore equation of ellipse becomes $\frac{x^{2}}{10}+\frac{y^{2}}{40}=1 \quad$ ans.
Q.4)	Find e, vertices, foci, LR, length of transverse axis, Conjugate axis and equation of directrix of given hyperbola $5 y^{2}-9 x^{2}=36$.
Sol.4)	We have , $5 y^{2}-9 x^{2}=36$ $\begin{aligned} & \Rightarrow-9 x^{2}+5 y^{2}=36 \\ & \Rightarrow-\frac{9 x^{2}}{36}+\frac{5 y^{2}}{36}=1 \\ & \Rightarrow-\frac{x^{2}}{4}+\frac{y^{2}}{\frac{36}{5}}=1 \\ & \Rightarrow \frac{-x^{2}}{(2)^{2}}+\frac{y^{2}}{\left(\frac{6}{\sqrt{5}}\right)^{2}}=1 \end{aligned}$ Compare with $-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ $a=2 \text { and } b=\frac{6}{\sqrt{5}}$ The given hyperbola is conjugate hyperbola ($2^{\text {nd }}$) 1) Centre $=(0,0)$ 2) $e=\sqrt{1+\frac{a^{2}}{b^{2}}}=\sqrt{1+\frac{4}{\frac{36}{5}}}=\sqrt{1+\frac{20}{36}}=\sqrt{1+\frac{5}{9}}$ $e=\sqrt{\frac{14}{9}}=\frac{\sqrt{14}}{3}$ 3) Vertices $=(0, \pm b)=\left(0, \pm \frac{6}{\sqrt{5}}\right)$ 4) foci $=(0, \pm b e)=\left(0 \pm, \frac{2 \sqrt{14}}{\sqrt{5}}\right)$ 5) $L R=\frac{2 a^{2}}{b}=\frac{2 \times 4}{\frac{6}{\sqrt{5}}}=\frac{8 \sqrt{5}}{6}=\frac{4 \sqrt{5}}{3}$ 6) Length of transverse axis $=2 b=\frac{12}{\sqrt{5}}$ 7) Length of conjugate axis $=2 a=4$
Q.5)	Find the equation of hyperbola with vertices ($\pm 2,0$) and foci ($\pm 3,0$).
Sol.5)	The given data is of 1st hyperbola (transverse) Compare vertices ($\pm 2,0$) with ($\pm a, 0$) We get, $a=2$ Compare foci ($\pm 3,0$) with ($\pm a e, 0$) We get we $=3$ $\begin{aligned} & \text { Now, } e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{\frac{a^{2}+b^{2}}{a^{2}}} \\ & \Rightarrow a e=\sqrt{a^{2}+b^{2}} \\ & \Rightarrow 3=\sqrt{4+b^{2}} \\ & \Rightarrow 9=4+b^{2} \\ & \Rightarrow b^{2}=5 \end{aligned}$ \therefore equation of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ $\Rightarrow \frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ ans.
Q.6)	Find the equation of hyperbola with foci ($0, \pm 13$) and conjugate axis is of length 24 .

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Sol.6)	The given is of $2^{\text {nd }}$ hyperbola Compare foci $(0, \pm 13)$ with $(0, \pm b e)$ $\Rightarrow b e=13$ Conjugate axis $=2 a=24$ $\Rightarrow a=12$ Now, $e=\sqrt{1+\frac{\mathrm{a}^{2}}{b^{2}}}=\sqrt{\frac{\mathrm{b}^{2}+\mathrm{a}^{2}}{\mathrm{~b}^{2}}}$ $\begin{aligned} & \Rightarrow b e=\sqrt{b^{2}+\mathrm{a}^{2}} \\ & \Rightarrow 13=\sqrt{b^{2}+144} \end{aligned}$ Squaring $\begin{aligned} & \Rightarrow 169=b^{2}+144 \\ & \Rightarrow b^{2}=25 \end{aligned}$ \therefore equation of hyperbola is $\frac{-x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ $\Rightarrow \frac{-x^{2}}{144}+\frac{y^{2}}{25}=1 \quad \text { ans }$
Q.7)	Find the equation of hyperbola with foci $(\pm 3 \sqrt{5}, 0)$ and latus rectum is of length 8 .
Sol.7)	The given data is of $1^{\text {st }}$ hyperbola Compare foci $(\pm 3 \sqrt{5}, 0)$ with $(\pm a e, 0)$ We get $a e=3 \sqrt{5}$ $\begin{aligned} & \mathrm{LR}=8 \\ & \Rightarrow \frac{2 b^{2}}{a}=8 \end{aligned}$ $\begin{equation*} \Rightarrow b^{2}=4 a \tag{i} \end{equation*}$ Now, $e=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\sqrt{\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}}}$ $\begin{aligned} & \Rightarrow a e=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}} \\ & \Rightarrow 3 \sqrt{5}=\sqrt{\mathrm{a}^{2}+4 \mathrm{a}} \end{aligned}$ Squaring $\begin{aligned} & \Rightarrow 45=a^{2}+4 a \\ & \Rightarrow \mathrm{a}^{2}+4 \mathrm{a}-45=0 \\ & \Rightarrow(a+9)(a-5)=0 \\ & \Rightarrow a=-9 \text { and } a=5 \end{aligned}$ For $a=-9 ; b^{2}=-36$ (from equation (i)) For $a=5 ; b^{2}=20$ \therefore equation of hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ $\Rightarrow \frac{x^{2}}{25}-\frac{y^{2}}{12}=1$ ans.
Q.8)	Find the equation hyperbola with foci $(0, \pm \sqrt{10})$; passing through $(2,3)$.
Sol.8)	Let equation of hyperbola is $\frac{-x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ $(2,3)$ lies on hyperbola $\begin{align*} & \Rightarrow \frac{-4}{a^{2}}+\frac{9}{b^{2}}=1 \\ & \Rightarrow-4 b^{2}+9 a^{2}=a^{2} b^{2} \tag{i} \end{align*}$ Compare foci $(a, \pm \sqrt{10})$ with $(0, \pm b e)$ $\Rightarrow b e=\sqrt{10}$ Now, $e=\sqrt{1+\frac{\mathrm{a}^{2}}{b^{2}}}=\sqrt{\frac{\mathrm{b}^{2}+\mathrm{a}^{2}}{\mathrm{~b}^{2}}}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\begin{aligned} & \Rightarrow b e=\sqrt{b^{2}+\mathrm{a}^{2}} \\ & \Rightarrow \sqrt{10}=\sqrt{b^{2}+\mathrm{a}^{2}} \end{aligned}$ Squaring $\begin{aligned} & \Rightarrow 10=b^{2}+\mathrm{a}^{2} \\ & \Rightarrow b^{2}=10-\mathrm{a}^{2} \text { put in equation (i) } \\ & \Rightarrow-4\left(10-a^{2}\right)+9 a^{2}=a^{2}\left(10-a^{2}\right) \\ & \Rightarrow-40+4 a^{2}+9 a^{2}=10 a^{2}-a^{4} \\ & \Rightarrow a^{4}+3 a^{2}-40=0 \\ & \Rightarrow a^{4}+8 a^{2}-5 a^{2}-40=0 \\ & \Rightarrow\left(a^{2}+8\right)\left(a^{2}-5\right)=0 \\ & \Rightarrow a^{2}=-8 ; a^{2}=5 \text { (rejected) } \\ & \therefore b^{2}=10-5 \\ & \Rightarrow b^{2}=5 \end{aligned}$ \therefore equation of hyperbola is $\frac{-x^{2}}{5}+\frac{y^{2}}{5}=1 \quad$ ans.
$>$	MISCELLANEOUS
Q.9)	A beam is supported at its ends by supports which are 12 meters a part. Since the load is concentrated at the centre, there is a deflection of 3 cm at the centre and the deflected beam is in the shape of a parabola. How far from the centre is the deflection 1 cm ?
Sol.9)	Let equation parabola is $x^{2}=4 a y$ $A(600,3)$ lies on it $\Rightarrow 3600=4 a(3)$ $\Rightarrow 3600=12 a$ $\Rightarrow a=300$ \therefore equation becomes $x^{2}=1200 y$ Now, $B(x, 2)$ lies on it $\begin{aligned} & x^{2}=2400 \\ & x=\sqrt{2400} \\ & =200 \sqrt{6} \mathrm{~cm} \text { or } 2 \sqrt{6} \mathrm{~cm} \end{aligned}$ \therefore required distance $=2 \sqrt{6} m$ ans.
Q.10)	The cable of a uniformly loaded suspension bridge hangs on the form of a parabola. The roadway which is horizontal \& 100 m long is supported by vertical wire attached to the cable, the longest wire being 30 m and the shortest being 6 m . Find the length of a supporting wire attached to the roadway 18 m from the middle.
Sol.10)	Let equation of parabola is $x^{2}=4 a y$ \qquad $A(50,24)$ lies on parabola $\Rightarrow 250=96 a$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

| $\Rightarrow a=\frac{2500}{96}$ put in equation (i) | |
| :--- | :--- | :--- |
| We have $x^{2}=4\left(\frac{2500}{96}\right) y$ | |
| $\Rightarrow x^{2}=\frac{2500}{24} y$ | |
| Now, $A(18, y)$ lies on it | |
| $\therefore 324=\frac{2500}{24} y$ | |
| $\Rightarrow \frac{324 \times 24}{2500}=y$ | |
| $\Rightarrow y=3.11$ | |
| \therefore required length $=6+y=6+3.11$ | |
| | $=y=9311 \mathrm{~m}$ |

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

