Chapter 5
 COMPLEX NUMBERS AND QUADRATIC EQUATIONS

INTRODUCTION

$\sqrt{-36}, \sqrt{-25}$ etc do not have values in the system of real numbers.
So we need to extend the real numbers system to a larger system.
Let us denote $\sqrt{-1}$ by the symbol i.
ie $\mathrm{i}^{2}=-1$
A number of the form $\mathrm{a}+\mathrm{ib}$ where $\mathrm{a} \& \mathrm{~b}$ are real numbers is defined to be a complex number.
Eg $2+\mathrm{i} 3,-7+\sqrt{2} \mathrm{i}, \sqrt{3} \mathrm{i}, 4+\underline{1} \mathrm{i}, 5=5+0 \mathrm{i},-7=-7+0 \mathrm{i}$ etc

For $z=2+i 5, \operatorname{Re} z=2$ (real part)
and $\operatorname{Im} z=5$ (imaginary part)
Refer algebra of complex numbers of text book pg 98

1) Addition of complex numbers

$$
\begin{aligned}
(2+\mathrm{i} 3)+(-3+\mathrm{i} 2) & =(2+-3)+\mathrm{i}(3+2) \\
= & -1+5 \mathrm{i}
\end{aligned}
$$

2) Difference of complex numbers

$$
\begin{gathered}
(2+\mathrm{i} 3)-(-3+\mathrm{i} 2)=(2+3)+\mathrm{i}(3-2) \\
=5+\mathrm{i}
\end{gathered}
$$

3) Multiplication of two complex numbers

$$
\begin{aligned}
(2+i 3)(-3+i 2) & =2(-3+i 2)+i 3(-3+i 2) \\
= & -6+4 i-9 i+6 i^{2} \\
= & -6-5 i-6 \\
= & -12-5 i
\end{aligned} \quad\left(i^{2}=-1\right)
$$

4) Division of complex numbers

$$
\begin{aligned}
\frac{2+\mathrm{i} 3}{-3+\mathrm{i} 2} & =\frac{(2+\mathrm{i} 3)}{(-3+\mathrm{i} 2)} \times \frac{(-3-\mathrm{i} 2)}{(-3-\mathrm{i} 2)} \\
& =\frac{-6-4 \mathrm{i}-9 \mathrm{i}-6 \mathrm{i}^{2}}{(-3)^{2}-(\mathrm{i} 2)^{2}} \\
& =\frac{-6-13 \mathrm{i}+6}{9-(-1) \times 4} \\
& =\frac{-13 \mathrm{i}}{13}=\underline{-1}
\end{aligned}
$$

5) Equality of 2 complex numbers
$a+i b=c+i d$, iff $a=c \& b=d$
6) $a+i b=0$, iff $a=0$ and $b=0$

Refer : the square roots of a negative real no \& identities (text page 100,101)

Formulas

a) IF $Z=a+i b$ then modulus of Z ie $|Z|=\left(a^{2}+b^{2}\right)^{1 / 2}$
b) Conjugate of Z is $\mathrm{a}-\mathrm{ib}$
c) Multiplicative inverse of $\mathbf{a}+\mathbf{i b}=\frac{\mathbf{a}}{\left(a^{2}+b^{2}\right)}-\frac{i b}{\left(a^{2}+b^{2}\right)}$
**d) Polar representation of a complex number
$a+i b=r(\cos \theta+i \sin \theta)$
Where $r=|Z|=\left(a^{2}+b^{2}\right)^{1 / 2}$ and $\theta=\arg Z(\operatorname{argument}$ or amplitude of Z which has many different values but when $-\pi<\theta \leq \pi, \theta$ is called principal argument of Z.

Trick method to find θ

Step 1 First find angle using the following

1) $\operatorname{Cos} \theta=1$ and $\sin \theta=0$ then angle $=0$
2) $\operatorname{Cos} \theta=0$ and $\sin \theta=1$ then angle $=\pi / 2$
3) Sin $\theta=\sqrt{3} / 2$ and $\cos \theta=1 / 2$ then angle $=\pi / 3$
4) $\operatorname{Sin} \theta=1 / 2$ and $\cos \theta=\sqrt{3} / 2$ then angle $=\pi / 6$

Step 2: To find $\boldsymbol{\theta}$

1) If both $\sin \theta$ and $\cos \theta$ are positive then $\theta=$ angle (first quadrant)
2) If sine positive, cose negative then $\theta=\pi$-angle (second quadrant)

3) If both $\sin \theta$ and $\cos \theta$ are negative the $\theta=\pi+$ angle (third quadrant)
4) If sine negative and cose positive then $\Theta=2 \pi$-angle (fourth quadrant)

Or $\theta=-$ (angle) since $\sin (-\theta)=-\sin \theta$ and $\cos (-\theta)=\cos \theta$
5) If $\sin \theta=0$ and $\cos \theta=-1$ then $\theta=\pi$
**e) Formula needed to find square root of a complex number
$(a+b)^{2}=(a-b)^{2}+4 a b$
ie $\left[x^{2}+y^{2}\right]^{2}=\left[x^{2}-y^{2}\right]^{2}+4 x^{2} y^{2}$

e) Powers of i

i) $i^{4 k}=1$
ii) $\boldsymbol{i}^{4 \boldsymbol{k}+\boldsymbol{1}}=\boldsymbol{i}$
iii) $i^{4 k+2}=-1$
iv) $\boldsymbol{i}^{\mathbf{4 k + 3}}=-\boldsymbol{i}$, for any integer k

Examples:

$i^{1}=i, i^{2}=-1, i^{3}=-i$ and $i^{4}=1 \&$

$$
i^{19}=i^{16} \times i^{3}=1 \times-i=-i
$$

g) Solutions of quadratic equation $a x^{2}+b x+c=0$ with real coefficients a, b, c and $\mathrm{a} \neq 0$ are given by $\boldsymbol{x}=\frac{-\boldsymbol{b} \pm \sqrt{\boldsymbol{b}^{2}-4 a c}}{2 a}$, If $b^{2}-4 a c \geq 0$

If $b^{2}-4 a c<0$ then $\boldsymbol{x}=\frac{-\boldsymbol{b} \pm \sqrt{4 \mathrm{ac}-\boldsymbol{b}^{2}}}{2 \boldsymbol{i}}$
Refer text page 102 the modulus and conjugate of a complex number properties given in the end. (i) to (v)
Ex 5.1
Q. $3^{*}(1$ mark $), 8^{*}(4$ marks $), 11^{* *}, 12^{* *}, 13^{* *}, 14^{* *}(4$ Marks $)$

Polar form (very important)

Ex 5.2

Q 2**) Express $Z=-\sqrt{3}+\mathrm{i}$ in the polar form and also write the modulus and the argument of Z

Solution Let $-\sqrt{3}+\mathrm{i}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$

$$
\text { Here } a=-\sqrt{3}, b=1
$$

$r=\left(a^{2}+b^{2}\right)^{1 / 2}=\sqrt{3+1}=\sqrt{4}=2$
$-\sqrt{3}+i=2 \cos \theta+i \times 2 \sin \theta$
Therefore $2 \cos \theta=-\sqrt{3}$ and $2 \sin \theta=1$
$\operatorname{Cos} \theta=-\sqrt{3} / 2$ and $\sin \theta=1 / 2$
Here $\cos \theta$ negative and $\sin \theta$ positive

Therefore $\Theta=\pi-\pi / 6=5 \pi / 6$ (see trick method given above)
Therefore polar form of $Z=-\sqrt{3}+i=2(\operatorname{Cos} 5 \pi / 6+i \operatorname{Sin} 5 \pi / 6)$

$$
|Z|=2 \text { and } \operatorname{argument} \text { of } Z=5 \pi / 6 \text { and }-\sqrt{3}+i=2(\operatorname{Cos} 5 \pi / 6+i \operatorname{Sin} 5 \pi / 6)
$$

Ex 5.2

$\mathrm{Q}(1 \text { to } 8)^{* *}$ Note: Q 1$) \Theta=4 \pi / 3$ or principal argument $\Theta=4 \pi / 3-2 \pi=-2 \pi / 3$
Q 5) $\Theta=5 \pi / 4$ or principal argument $\Theta=5 \pi / 4-2 \pi=-3 \pi / 4$
eg $7^{* *}, \operatorname{eg} 8^{* *}$

Ex 5.3

Q 1,8,9,10 (1 mark)
Misc examples (12 to 16$)^{* *}$

Misc exercise

$\mathrm{Q} 4^{* *}, 5^{* *}, 10^{* *}, 11^{* *}, 12^{* *}, 13^{* *}, 14^{* *}, 15^{* *}, 16^{* *}, 17^{*}, 20^{* *}$
Supplementary material
eg 12**

Ex 5.4

$\mathrm{Q}(1 \text { to } 6)^{* *}$

EXTRA/HOT QUESTIONS

$1^{* *} \quad$ Find the square roots of the following complex numbers (4 marks)
i. $6+8 \mathrm{i}$
ii. $3-4 \mathrm{i}$
iii. $\quad 2+3 \mathrm{i}(\mathrm{HOT})$
iv. $7-30 \sqrt{2} i$
v. $3+4 \mathrm{i}$ (HOT) $3-4 i$

2** Convert the following complex numbers in the polar form
i. $\quad 3 \sqrt{3}+3 \mathrm{i}$
ii. $\quad \underline{1-\mathrm{i}}$
$1+\mathrm{i}$
iii. $\quad 1+\mathrm{i}$
iv. $\quad-1+\sqrt{3} i$
v. $-3+3 \mathrm{i}$
vi. $\quad-2-\mathrm{i}$
3. If $\mathrm{a}+\mathrm{ib}=\frac{x+i}{x-i}$ where x is a real, prove that $\mathrm{a}^{2}+\mathrm{b}^{2}=1$ and $\mathrm{b} / \mathrm{a}=2 \mathrm{x} /\left(\mathrm{x}^{2}-1\right) 4$ marks

4 Find the real and imaginary part of i. (1 mark)
5 Compute : $\mathrm{i}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4}$ (1 mark)
6 Solve the following quadratic equations (I mark)
i) $x^{2}-(\sqrt{2}+1) x+\sqrt{2}=0$
ii) $2 x^{2}+5=0$

7 Find the complex conjugate and multiplicative inverse of (4 mark)
i) $(2-5 i)^{2}$
ii) $\underline{2+3 i}$

$$
3-7 i
$$

8 If $|\mathrm{Z}|=2$ and $\arg \mathrm{Z}=\pi / 4$ then $\mathrm{Z}=$ \qquad . (1 mark)

Answers

1) i) $2 \sqrt{2}+\sqrt{2} i,-2 \sqrt{2}-\sqrt{2} i$
ii) $2-\mathrm{i},-2+\mathrm{i}$
iii) $\frac{\sqrt{\sqrt{13}+2}}{\sqrt{2}}+\frac{\sqrt{\sqrt{13}-2} i}{\sqrt{2}}, \quad \frac{\sqrt{\sqrt{13}+2}}{\sqrt{2}}+\frac{\sqrt{\sqrt{13}-2} i}{\sqrt{2}}$,
iv) $5-3 \sqrt{2} i,-5+3 \sqrt{2} i$
v) $3 / 5+4 / 5 \mathrm{i},-3 / 5-4 / 5 \mathrm{i}$
2) i) $6(\cos \pi / 6+i \sin \pi / 6)$
ii) $\cos (-\pi / 2)+i \sin (-\pi / 2)$
iii) $\sqrt{2}(\cos \pi / 4+i \sin \pi / 4)$
iv) $2(\cos 2 \pi / 3+i \sin 2 \pi / 3)$
iv) $3 \sqrt{2}(\cos 3 \pi / 4+i \sin 3 \pi / 4)$
3) 0,1
4) 0
5) i) $\sqrt{2}, 1$

ii) $\sqrt{\frac{5}{2}} i,-\sqrt{\frac{5}{2}} i$
vi) $2 \sqrt{2}(\cos 5 \pi / 4+\operatorname{isin} 5 \pi / 4)$ or $2 \sqrt{2}[\cos (-3 \pi / 4)+i \sin (-3 \pi / 4)]$
7) i) $-21+10 \mathrm{i}, \frac{-21}{541}-\frac{10-\mathrm{i}}{541}$
ii) $-\frac{15}{58}-\underline{23 i}, \frac{3-7 \mathrm{i}}{58}$
8) $\sqrt{2}+i \sqrt{2}$

