Q. 1 Solve the equation $2 x^{2}+x+1=0 . \quad$ (2 marks)
Q. 2 Evaluate: $\left[\mathbf{i}^{18}+\left(\frac{1}{\mathbf{i}}\right)^{25}\right]$
Q. 3 Convert the given complex number in polar form: -3. (3 marks)
Q. 4 Express the given complex number in the form $a+i b:(1-i)-(-1+i 6) . \quad$ (1 mark)
Q. 5 Express $(-\sqrt{3}+\sqrt{-2})(2 \sqrt{3}-i)$ in the form $a+i b$.
Q. 6 Evaluate: $(-\sqrt{-1})^{4 \mathrm{n}+3} . \quad$ (1 mark)
Q. 7

Express the given complex number in the form $a+i b:\left(\frac{1}{3}+3 i\right)^{3} . \quad$ (3 marks)
Q. 8 Find the multiplicative inverse of the complex number $\sqrt{5}+3 i$. (2 marks)
Q. 9 Express the given complex number in the form $a+i b:(1-i)^{4} . \quad$ (2 marks)
Q. 10 Find the multiplicative inverse of the complex number -i. (1 mark)
Q. 11

If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$, then prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.
Q. 12 Convert the complex number $z=\frac{1-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ in the polar form
Q. 13 Solve : $x^{2}+2=0$
Q. 14 Solve $4 x^{2}-25 i^{2}=0 . \quad$ (1 mark)
Q. 15 Find the argument of $1+\sqrt{3} \mathbf{i}$. (1 mark)
Q. 16 Express $\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]$ in the form a+bi.
Q. 17 Express $\mathrm{i}^{9}+\mathrm{i}^{10}+\mathrm{i}^{11}+\mathrm{i}^{12}$ in the form $\mathrm{a}+\mathrm{bi}$.
Q. 18 Express : $\mathrm{i}^{9}+\mathrm{i}^{19}$ in the form $\mathrm{a}+\mathrm{bi}$.
Q. 19 Solve the quadratic equation $25 x^{2}-30 x+11=0 . \quad$ (2 marks)
Q. 20 Write the conjugate of complex number $-5+3 \mathrm{i}$. (1 mark)

