Downloaded from www.studiestoday.com

J.E.E. Main/ Advanced Foundation - XI Maths Worksheet Chapter#5. Complex Numbers and Quadratic Equations

Full Marks:

Time: 60 min

- Q.1 Solve the equation $2x^2 + x + 1 = 0$. (2 marks)
- Q.2 Evaluate: $\left[i^{18} + \left(\frac{1}{i}\right)^{25}\right]$
- Q.3 Convert the given complex number in polar form: –3. (3 marks)
- Q.4 Express the given complex number in the form a + ib: (1 i) (-1 + i6). (1 mark)
- Q.5 Express $(-\sqrt{3} + \sqrt{-2})(2\sqrt{3} i)$ in the form a+ib.
- Q.6 Evaluate: $(-\sqrt{-1})^{4n+3}$. (1 mark)
- Q.7 Express the given complex number in the form a + ib: $\left(\frac{1}{3} + 3i\right)^3$. (3 marks)
- Q.8 Find the multiplicative inverse of the complex number $\sqrt{5}$ + 3i. (2 marks)
- Q.9 Express the given complex number in the form a + ib: $(1 i)^4$. (2 marks)
- Q.10 Find the multiplicative inverse of the complex number –i. (1 mark
- Q.11 If $x iy = \sqrt{\frac{a ib}{c id}}$, then prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$. (5 marks)
- Q.12 Convert the complex number $z = \frac{i-1}{\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}}$ in the polar form
- Q.13 Solve: $x^2 + 2 = 0$
- Q.14 Solve $4x^2 25i^2 = 0$. (1 mark)
- Q.15 Find the argument of $1 + \sqrt{3}i$. (1 mark)
- Q.16 Express $\left[\left(\frac{1}{3}+i\frac{7}{3}\right)+\left(4+i\frac{1}{3}\right)\right]$ in the form a+bi.
- Q.17 Express $i^9 + i^{10} + i^{11} + i^{12}$ in the form a + bi.
- Q.18 Express: $i^9 + i^{19}$ in the form a+bi.
- Q.19 Solve the quadratic equation $25x^2 30x + 11 = 0$. (2 marks)
- Q.20 Write the conjugate of complex number -5 + 3i. (1 mark)