CHAPTER 8

BINOMIAL THEOREM

Binomial theorem for any positive integer n

```
(a+b)\mp@subsup{)}{}{n}=\mp@subsup{}{}{n}\mp@subsup{C}{0}{}\mp@subsup{a}{}{n}+\mp@subsup{}{}{n}\mp@subsup{C}{1}{}\mp@subsup{\textrm{a}}{}{\textrm{n}-1}\textrm{b}+\mp@subsup{}{}{\textrm{n}}\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{a}}{}{\textrm{n}-2}\mp@subsup{\textrm{b}}{}{2}+\mp@subsup{}{}{n}\mp@subsup{C}{3}{}\mp@subsup{\textrm{a}}{}{\textrm{n}-3}\mp@subsup{\textrm{b}}{}{3}+\ldots\ldots...+\mp@subsup{}{}{\textrm{n}}\mp@subsup{C}{n}{}\mp@subsup{\textrm{b}}{}{n}
```

Recall

1) ${ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$
2) ${ }^{n} C_{r}={ }^{n} C_{n-r}$ ${ }^{7} \mathrm{C}_{4}={ }^{7} \mathrm{C}_{3}=\underline{7 \times 6 \times 5}=35$ $1 \times 2 \times 3$ ${ }^{8} \mathrm{C}_{6}={ }^{8} \mathrm{C}_{2}=\frac{8 \times 7}{1 \times 2}=28$
3) ${ }^{n} C_{n}={ }^{n} C_{0}=1$
4) ${ }^{n} C_{1}=n$

OBSERVATIONS/ FORMULAS

1) The coefficients ${ }^{n} C_{r}$ occurring in the binomial theorem are known as binomial coefficients.
2) There are $(n+1)$ terms in the expansion of $(a+b)^{n}$, ie one more than the index.
3) The coefficient of the terms equidistant from the beginning and end are equal.
4) $(1+\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{x}^{2}+{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{x}^{3}+\ldots \ldots .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$. (By putting $\mathrm{a}=1$ and $b=x$ in the expansion of $\left.(a+b)^{n}\right)$.
5) $(1-\mathrm{x})^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}-{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{x}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{x}^{2}-{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{x}^{3}+\ldots \ldots .+(-1)^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$ (By putting a $=1$ and $b=-x$ in the expansion of $\left.(a+b)^{n}\right)$.
6) $2^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$
(By putting $\mathrm{x}=1$ in (4))
7) $0={ }^{n} C_{0}-{ }^{n} C_{1}+{ }^{n} C_{2}-{ }^{n} C_{3}+\ldots . .+(-1)^{n}{ }^{n} C_{n}$. (By putting $x=1$ in (5))
$\left.8^{* *}\right)(\mathrm{r}+1)^{\text {th }}$ term in the binomial expansion for $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$ is called the general term which is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

i.e to find $4^{\text {th }}$ term $=T_{4}$, substitute $r=3$.

9*) Middle term in the expansion of $(a+b)^{n}$
i) If \mathbf{n} is even, middle term $=\left[\frac{n}{2}+1\right]^{\text {th }}$ term.
ii) If \mathbf{n} is odd, then 2 middle terms are, $\left[\frac{n+1}{2}\right]^{\text {th }}$ term and $\left[\frac{n+1}{2}+1\right]^{\text {th }}$ term.

10*) To find the term independent of \mathbf{x} or the constant term, find the coefficient of x^{0}.(ie put power of $\mathrm{x}=0$ and find r)

Problems

eg 4** (4 marks)

Ex 8.1

Q 2,4,7,9 (1 mark)
10*, 11*, 12* (4 marks)
13**, 14** (4 marks)
$13^{* *}$) Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer Or
$3^{2 n+2}-8 n-9$ is divisible by 64
Solution: $9^{n+1}-8 n-9=(1+8)^{n+1}-8 n-9$

$$
\begin{gathered}
={ }^{n+1} C_{0}+{ }^{n+1} C_{1} 8+{ }^{n+1} C_{2} 8^{2}+{ }^{n+1} C_{3} 8^{3}+\ldots \ldots .+{ }^{n+1} C_{n+1} 8^{n+1}-8 n-9 \\
=1+8 n+8+8^{2}\left[{ }^{n+1} C_{2}+{ }^{n+1} C_{3} \cdot 8+\ldots \ldots+8^{n-1}\right]-8 n-9 \\
\quad\left(\text { since }{ }^{n+1} C_{0}={ }^{n+1} C_{n+1}=1,{ }^{n+1} C_{1}={ }^{n+1},\right. \\
\left.8^{n+1} / 8^{2}=8^{n+1-2}=8^{n-1}\right) \\
=8^{2}\left[{ }^{n+1} C_{2}+{ }^{n+1} C_{3} \cdot 8+\ldots . .+8^{n-1}\right] \text { which is divisible by } 64
\end{gathered}
$$

Problems

$$
\text { eg } 5^{*}, 6^{* *}, 7^{*} \quad \text { (4 marks) }
$$

eg $8^{* *}, 9^{* *}$ (6 marks)

Ex 8.2

Q 2,3* (1 mark)
Q $7^{* *}, 8^{* *}, 9^{* *}, 11^{* *}, 12^{* *}$ (4 marks), $10^{* *}$ (6 marks)
eg $10^{* *}, 11(\mathrm{HOT}), 12(\mathrm{HOT}), 13(\mathrm{HOT})$, eg $15^{*}, 17^{* *} \quad$ (4 marks)
Misc ex
Q 1** (6 mark),2,3(HOT), 8* (4 marks)

Ex 8.2

Q 10**(6 marks)
The coefficients of the $(\mathrm{r}-1)^{\mathrm{th}}, \mathrm{r}^{\text {th }}$ and $(\mathrm{r}+1)^{\text {th }}$ terms in the expansion of $(\mathrm{x}+1)^{\mathrm{n}}$ are in the ratio $1: 3: 5$. Find n and r.

Solution
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}}$
$\mathrm{T}_{\mathrm{r}}=\mathrm{T}_{(\mathrm{r}-1)+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1} \mathrm{X}^{\mathrm{n}-\mathrm{r}+1}$
$\mathrm{T}_{\mathrm{r}-1}={ }_{\mathrm{T}(\mathrm{r}-2)+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} \mathrm{X}^{\mathrm{n}-\mathrm{r}+2}$
Given ${ }^{n} C_{r-2}:{ }^{n} C_{r-1}:{ }^{n} C_{r}:: 1: 3: 5$
${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}=\underline{1}$
${ }^{n} C_{r-1} \quad 3$
$\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r}+2)!(\mathrm{r}-2)!} \div \quad-\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r}+1)!(\mathrm{r}-1)!}=\frac{1}{3}$
$\frac{(\mathrm{n}-\mathrm{r}+1)!}{(\mathrm{n}-\mathrm{r}+2)!} \times \frac{(\mathrm{r}-1)!}{(\mathrm{r}-2)!}=\frac{1}{3}$
$(\mathrm{n}-\mathrm{r}+1)!\quad \times \underline{(\mathrm{r}-2)!(\mathrm{r}-1)}=\quad \underline{1}$
$(n-r+1)!(n-r+2) \quad(r-2)!\quad 3$
$\xrightarrow{\mathrm{r}-1}=\underline{1}$
$n-r+2 \quad 3$
$3 \mathrm{r}-3=\mathrm{n}-\mathrm{r}+2$
$\mathrm{n}-4 \mathrm{r}=-5$ \qquad
${ }^{n} \underline{C}_{\underline{r}-1}=\underline{3}$
${ }^{n} \mathrm{C}_{\mathrm{r}}$
simplify as above and get the equation $3 n-8 r=-3$ solving (1) and (2) we get
$\mathrm{n}=7$ and $\mathrm{r}=3$.

EXTRA/HOT QUESTIONS

1) Using Binomial theorem show that $2^{3 n}-7 n-1$ or $8^{n}-7 n-1$ is divisible by 49 where n is a natural number. (4 marks**)
2) Find the coefficient of x^{3} in the equation of $(1+2 x)^{6}(1-x)^{7}$ (HOT)
3) Find n if the coefficient of $5^{\text {th }}, 6^{\text {th }} \& 7^{\text {th }}$ terms in the expansion of $(1+x)^{n}$ are in A.P.
4) If the coefficient of x^{r-1}, x^{r}, x^{r+1} in the expansion of $(1+x)^{n}$ are in A.P. prove that $n^{2}-(4 r+1) n+4 r^{2}-2=0$. (HOT)
5) If $6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }} \& 9^{\text {th }}$ terms in the expansion of $(x+y)^{\mathrm{n}}$ are respectively $\mathrm{a}, \mathrm{b}, \mathrm{c}$ $\& d$ then show that $\frac{b^{2}-a c}{c^{2}-b d}=\frac{4 a}{3 c}(H O T)$
6) Find the term independent of x in the expansion of $\left[3 x^{2}-\frac{1}{2 x^{3}}\right]^{10}$ (4 marks*)
7) Using Binomial theorem show that $3^{3 n}-26 n-1$ is divisible by 676 . (4 marks**)
8) The $3^{\text {rd }}, 4^{\text {th }} \& 5^{\text {th }}$ terms in the expansion of $(x+a)^{\text {n }}$ are $84,280 \& 560$ respectively. Find the values of x, a and n. (6 marks**)
9) The coefficient of 3 consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio $3: 8: 14$. Find n. (6 mark**)
10) Find the constant term in the expansion of $(x-1 / x)^{14}$
11) Find the middle term(s) in the expansion of
i) $\left[\frac{x}{a}-\frac{a}{x}\right]^{10}$ ii) $\left[2 x-\frac{x^{2}}{4}\right]^{9}$
12)

If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots . .+C_{n} x^{n}$
Prove that $\mathrm{C}_{1}+2 \mathrm{C}_{2}+3 \mathrm{C}_{3}+\ldots \ldots+\mathrm{nC}_{\mathrm{n}}=\mathrm{n} .2^{\mathrm{n}-1}$

Answers

2) -43
3) $n=7$ or 14
4) $76545 / 8$
5) $x=1, a=2, n=7$
6) 10
7) -3432
8) i) -252
ii) $-63 x^{14}$
