CHAPTER - 8

BINOMIAL THEOREM

KEY POINTS

- $\bullet \quad (a + b)^n = n_{C_0} a^n + n_{C_1} a^{n-1} b + n_{C_2} a^{n-2} b^2 + - + n_{C_n} b^n$ $= \sum_{r=0}^n n_{C_r} a^{n-r} b^r, n \in N$
- T_{r+1} = General term = $n_{C_r} a^{n-r} b^r$ $0 \le r \le n$
- Total number of terms in (a + b)ⁿ is (n + 1)
- If n is even, then in the expansion of $(a + b)^n$, middle term is $\left(\frac{n}{2} + 1\right)^{tn}$ term i.e. $\left(\frac{n+2}{2}\right)^{th}$ term.
- If n is odd, then in the expansion of $(a + b)^n$, middle terms are $\left(\frac{n+1}{2}\right)^{th}$ and $\left(\frac{n+3}{2}\right)^{th}$ terms
- In $(a + b)^n$, r^{th} term from the end is same as $(n r + 2)^{th}$ term from the beginning.
- r^{th} term from the end in $(a + b)^n$ = r^{th} term from the beginning in $(b + a)^n$
- Downloaded from www.studiestoday.com

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

- 1. Compute (98)², using binomial theorem.
- 2. Expand $\left(x \frac{1}{x}\right)^3$ using binomial theorem.
- 3. Write number of terms in the expansion of $(1 + 2x + x^2)^{10}$.
- 4. Write number of terms in $(2a b)^{15}$
- 5. Simplify:

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}}$$

6. Write value of

$$^{2n-1}C_5 + ^{2n-1}C_6 + ^{2n}C_7$$

[Hint : Use
$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$
]

- 7. In the expansion, $(1 + x)^{14}$, write the coefficient of x^{12}
- 8. Find the sum of the coefficients in $(x + y)^8$

[**Hint**: Put
$$x = 1$$
, $y = 1$]

9. If ${}^{n}C_{n-3} = 120$, find n.

[Hint: Express 720 as the product of 3 consecutive positive integers]

10. In
$$\left(\frac{x}{2} - \frac{2}{x}\right)^8$$
, write 5th term.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

11. If the first three terms in the expansion of $(a + b)^n$ are 27, 54 and 36 respectively, then find a, b and n.

Downloaded from www.studiestoday.com

13. In
$$\left(2x - \frac{1}{x^2}\right)^{15}$$
, find the term independent of x.

14. Evaluate :
$$(\sqrt{2} + 1)^5 - (\sqrt{2} - 1)^5$$
 using binomial theorem.

- 15. Evaluate (0.9)⁴ using binomial theorem.
- 16. Prove that if n is odd, then $a^n + b^n$ is divisible by a + b.

[Hint:
$$a^n = (a + b - b)^n$$
. Now use binomial theorem]

- 17. In the expansion of $(1 + x^2)^8$, find the difference between the coefficients of x^6 and x^4 .
- 18. In $\left(2x \frac{3}{x}\right)^8$, find 7th term from end.
- 19. In $\left(2x^3 \frac{1}{x^2}\right)^{12}$, find the coefficient of x^{11} .
- 20. Find the coefficient of x^4 in $(1 x)^2 (2 + x)^5$ using binomial theorem.
- 21. Using binomial theorem, show that

$$3^{2n+2} - 8n - 9$$
 is divisible by 8.

[**Hint**:
$$3^{2n+2} = 9 (3^2)^n = 9 (1 + 8)^n$$
, Now use binomial theorem.]

22. Prove that,

$$\sum^{20} \,\, ^{20}C_{\,20-r} \left(2-t\right)^{20-r} \left(t-1\right)^{r} \, = \, 1$$

- 23. Find the middle term(s) in $\left(x \frac{1}{x}\right)^{x}$
- 24. If the coefficients of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio 1:3:5, then show that n = 7.
- 25. Show that the coefficient of middle term in the expansion of $(1 + x)^{20}$ is equal to the sum of the coefficients of two middle terms in the expansion

Downibaded from www.studiestoday.com

LONG ANSWER TYPE QUESTIONS (6 MARKS)

- 26. Show that the coefficient of x^5 in the expansion of product $(1 + 2x)^6$ $(1 x)^7$ is 171.
- 27. If the 3^{rd} , 4^{th} and 5^{th} terms in the expansion of $(x + a)^n$ are 84, 280 and 560 respectively then find the values of a, x and n
- 28. In the expansion of $(1 x)^{2n-1}$, find the sum of coefficients of x^{r-1} and x^{2n-r}
- 29. If the coefficients of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ and x^{-7} in $\left(ax \frac{1}{bx^2}\right)^{11}$ are equal, then show that ab = 1

ANSWERS

- 1. 9604
- 3. 21
- 5. $\frac{n-r+1}{r}$
- 7. 91
- 9. n = 10
- 11. a = 3, b = 2, n = 3
- 13. $-2^{10} \times {}^{15}C_{5}$
- 15. 0.6561
- 18. 16128 x⁴
- 20. 10
- 27. a = 2, x = 1, n = 7

- 2. $x^3 \frac{1}{x^3} 3x + \frac{3}{x}$
- 4. 16
- 6. ^{2n+1}C
- 8. 256
- 10. 70
- 12. 9th term
- 14. 82
- 17. 28
- 19. -101376
- 23. 70
- 28. 0