Downloaded from www.studiestoday.com

CHAPTER - 8

BINOMIAL THEOREM

KEY POINTS

- $(a+b)^{n}=n_{C_{0}} a^{n}+n_{C_{1}} a^{n-1} b+n_{C_{2}} a^{n-2} b^{2}+\cdots+n_{C_{n}} b^{n}$

$$
=\sum_{r=0}^{n} n_{C_{r}} a^{n-r} b^{r}, n \in N
$$

- $\mathrm{T}_{\mathrm{r}+1}=$ General term

$$
=n_{c_{r}} a^{n-r} b^{r} \quad 0 \leq r \leq n
$$

- Total number of terms in $(a+b)^{n}$ is $(\mathrm{n}+1)$
- If n is even, then in the expansion of $(a+b)^{n}$, middle term is $\left(\frac{n}{2}+1\right)^{\text {th }}$ term i.e. $\left(\frac{\mathrm{n}+2}{2}\right)^{\text {th }}$ term.
- If n is odd, then in the expansion of $(a+b)^{n}$, middle terms are $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ and $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$ terms
- In $(a+b)^{n}$, $r^{\text {th }}$ term from the end is same as $(n-r+2)^{\text {th }}$ term from the beginning.
- $r^{\text {th }}$ term from the end in $(a+b)^{n}$
$=r^{\text {th }}$ term from the beginning in $(b+a)^{n}$

Downloaded from www.studiestoday.com

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Compute $(98)^{2}$, using binomial theorem.
2. Expand $\left(x-\frac{1}{x}\right)^{3}$ using binomial theorem.
3. Write number of terms in the expansion of $\left(1+2 x+x^{2}\right)^{10}$.
4. Write number of terms in $(2 a-b)^{15}$
5. Simplify :

$$
\frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}}{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}}
$$

6. Write value of

$$
{ }^{2 n-1} C_{5}+{ }^{2 n-1} C_{6}+{ }^{2 n} C_{7}
$$

[Hint: Use ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$]
7. In the expansion, $(1+x)^{14}$, write the coefficient of x^{12}
8. Find the sum of the coefficients in $(x+y)^{8}$
[Hint : Put $x=1, y=1]$
9. If ${ }^{n} C_{n-3}=120$, find n.
[Hint : Express 720 as the product of 3 consecutive positive integers]
10. $\ln \left(\frac{x}{2}-\frac{2}{x}\right)^{8}$, write $5^{\text {th }}$ term.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

11. If the first three terms in the expansion of $(a+b)^{n}$ are 27,54 and 36 respectively, then find a, b and n.
12. In $\left(3 x^{2}-\frac{1}{x}\right)^{18}$, which term contains x^{12} ?

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

13. In $\left(2 x-\frac{1}{x^{2}}\right)^{15}$, find the term independent of x.
14. Evaluate : $(\sqrt{2}+1)^{5}-(\sqrt{2}-1)^{5}$ using binomial theorem.
15. Evaluate $(0.9)^{4}$ using binomial theorem.
16. Prove that if n is odd, then $a^{n}+b^{n}$ is divisible by $a+b$.
[Hint : $a^{n}=(a+b-b)^{n}$. Now use binomial theorem]
17. In the expansion of $\left(1+x^{2}\right)^{8}$, find the difference between the coefficients of x^{6} and x^{4}.
18. In $\left(2 x-\frac{3}{x}\right)^{8}$, find $7^{\text {th }}$ term from end.
19. In $\left(2 x^{3}-\frac{1}{x^{2}}\right)^{12}$, find the coefficient of x^{11}.
20. Find the coefficient of x^{4} in $(1-x)^{2}(2+x)^{5}$ using binomial theorem.
21. Using binomial theorem, show that
$3^{2 n+2}-8 n-9$ is divisible by 8 .
[Hint : $3^{2 n+2}=9\left(3^{2}\right)^{n}=9(1+8)^{n}$, Now use binomial theorem.]
22. Prove that,

$$
\sum_{r=0}^{20}{ }^{20} C_{20-r}(2-t)^{20-r}(t-1)^{r}=1
$$

23. Find the middle term(s) in $\left(x-\frac{1}{x}\right)^{8}$
24. If the coefficients of three consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio $1: 3: 5$, then show that $n=7$.
25. Show that the coefficient of middle term in the expansion of $(1+x)^{20}$ is equal to the sum of the coefficients of two middle terms in the expansion

Downloaded from www.studiestoday.com

LONG ANSWER TYPE QUESTIONS (6 MARKS)

26. Show that the coefficient of x^{5} in the expansion of product $(1+2 x)^{6}$ $(1-x)^{7}$ is 171 .
27. If the $3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ terms in the expansion of $(x+a)^{n}$ are 84,280 and 560 respectively then find the values of a, x and n
28. In the expansion of $(1-x)^{2 n-1}$, find the sum of coefficients of x^{r-1} and $x^{2 n-r}$
29. If the coefficients of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ and x^{-7} in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$ are equal, then show that $a b=1$

ANSWERS

1. 9604
2. 21
3. $\frac{n-r+1}{r}$
4. 91
5. $\mathrm{n}=10$
6. $a=3, b=2, n=3$
7. $-2^{10} \times{ }^{15} \mathrm{C}_{5}$
8. 0.6561
9. $16128 \mathrm{x}^{4}$
10. 10
11. $a=2, x=1, n=7$
12. $x^{3}-\frac{1}{x^{3}}-3 x+\frac{3}{x}$
13. 16
14. ${ }^{2 n+1} C_{7}$
15. 256
16. 70
17. $9^{\text {th }}$ term
18. 82
19. 28
20. -101376
21. 70
22. 0
