Downloaded from www.studiestoday.com

Bhai Parmanand Vidya Mandir

Maths. Assignment

Class - XI

Ch. 8 Binomial Theorem

1. Using binomial theorem, expand (i) $\left(\sqrt{\frac{x}{a}}-\sqrt{\frac{a}{x}}\right)^{6}$ (ii) $(\sqrt[8]{x}-\sqrt[8]{a})^{6}$ (iii) $\left(x+1-\frac{1}{x}\right)^{3}$
2. Using binomial theorem, prove that.
(i) $\quad 2^{3 n}-7 n-1$ is divisible by $49, n \in N$
(ii) $3^{2 \mathrm{n}+2}-8 \mathrm{n}-9$ is divisible by $64, \mathrm{n} \in \mathrm{N}$.
(iii) $3^{3 n}-26 n-1$ is divisible by 676 .
3. Using binomial theorem determine which number is larger
(1.2) ${ }^{4000}$ or 800 ?
4. Find the value of $(1.01)^{10}+(1-0.01)^{10}$ correct to 7 places of decimals .
5. Find the value of α for which the coefficients of the middle terms in the expansion of $(1+\alpha x)^{4}$ and $(1-\alpha x)^{6}$ are equal , find α.
6. Find the coefficient of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ and x^{-7} in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$ and find the relation between a and b so that the coefficients are equal .
7. If the coefficients of x and x^{2} in the expansion of $(1+x)^{m}(1-x)^{n}$ are 3 and -6 respectively. Find the values of m and n.
8. If the fourth term in the expansion of $\left(a x+\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, then find the values of a and n.
9. In the binomial expansion of $(a+b)^{n}$, the coefficients of the fourth and thirteenth terms are equal to each other. Find n
10. Find the $11^{\text {th }}$ term from the beginning and the $11^{\text {th }}$ term from the end in the expansion of $\left(2 x-\frac{1}{x^{2}}\right)^{25}$.
11. Does the expansion of $\left(2 x^{2}-\frac{1}{x}\right)^{20}$ contain any term involving x^{9} ?
12. Show that the expansion of $\left(x^{2}+1 / x\right)^{12}$ does not contain any term involving x^{-1}.
13. Find the middle term(s) in the expansion of (i) $\left(x-\frac{1}{x}\right)^{2 n+1}$. (ii) $\left(3 x-\frac{2}{x^{2}}\right)^{15}$
14. Find the term independent of x in the expansion of $\left(\sqrt[\mathrm{g}]{x}+\frac{1}{2} \sqrt[\mathrm{~g}]{x}\right)^{18}, \mathrm{x}>0$
15. If the coefficients of $(2 r+1)^{\text {th }}$ term and $(r+2)^{\text {th }}$ term in the expansion of $(1+x)^{43}$ are equal, find r
16. Prove that the coefficients of $(r+1)^{\text {th }}$ term in the expansion of $(1+x)^{\mathrm{n}+1}$ is equal to the sum of the Coefficients of $\mathrm{r}^{\text {th }}$ and $(\mathrm{r}+1)^{\text {th }}$ terms in the expansion of $(1+\mathrm{x})^{\mathrm{n}}$.

Downloaded from www.studiestoday.com

17. Prove that the terms independent of x in the expansion of $\left(x+\frac{1}{x}\right)^{2 n}$ is $\frac{1,3.5 m \ldots(2 n-1)}{n!} 2^{n}$.
18. If the coefficients of $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ term in the expansion of $(1+x)^{2 n}$ are in A.P , then Show that $2 n^{2}-9 n+7=0$.
19. If in the expansion of $(1+x)^{n}$, the coefficients of $p^{\text {th }}$ and $q^{\text {th }}$ terms are equal, prove that $p+q=n+2, p \neq q$.
20. If $3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}$ and $6^{\text {th }}$ terms in the expansion of $(x+\alpha)^{\text {n }}$ be respectively a,b,c and d. Prove that $\frac{b^{2}-a c}{c^{2}-b d}=\frac{5 a}{3 c}$
21. If $6^{\text {th }}, 7^{\text {th }}$ and $8^{\text {th }}$ terms in the expansion of $(x+a)^{n}$ are 112,7 and $1 / 4$ resp. Find x, a, n
22. Find a , if the coefficient of x^{2} and x^{3} in the expansion of $(3+a x)^{9}$ are equal .
23. Find the coefficient of a^{4} in the product $(1+2 a)^{4}(2-a)^{5}$.
24. Find the coefficient of x^{5} in the expansion of $(1+x)^{21}+(1+x)^{22}+\ldots \ldots \ldots .+(1+x)^{30}$.
25. If in the expansion of $(1-x)^{2 n-1}$, the coefficient of x^{r} is denoted by a_{r}, then Prove that $a_{r-1}+a_{2 n-r}=0$.
26. The binomial coefficient of the third term from the end in the expansion of $\left(y^{2 / 3}+x^{5 / 4}\right)^{n}$ Is 91 , find $9^{\text {th }}$ term of the expansion .
27. Find the coefficient of x^{10} in the expansion of $\left(1+3 x+3 x^{2}+x^{3}\right)^{14}$.

Answer key:

1. (i) $\frac{x^{s}}{a^{8}}-6 \frac{x^{x}}{a^{2}}+15 \frac{x}{a}-20+15 \frac{a}{x}-6 \frac{a^{z}}{x^{2}}+\frac{a^{3}}{x^{x}}$.
(ii) $x^{2}-6 x^{5 / 3} a^{1 / 3}+15 x^{4 / 3} a^{2 / 3}-20 a x+15 x^{2 / 3} a^{4 / 3}-6 x^{1 / 3} a^{5 / 3}+a^{2}$
(iii) $x^{3}+3 x^{2}-5+\frac{3}{x^{2}}-\frac{1}{x^{8}}$
2. 800

$$
\begin{array}{ll}
\text { 4. } 2.0090042 & 5 . \alpha=0,-\frac{3}{10}
\end{array}
$$

6. $\mathrm{ab}=1 \quad$ 7. $\mathrm{m}=12, \mathrm{n}=9$
7. $a=\frac{1}{2}, n=6$
8. 15
9. ${ }^{25} \mathrm{C}_{10}\left(\frac{2^{15}}{X^{5}}\right),-{ }^{25} \mathrm{C}_{15}\left(\frac{2^{10}}{x^{\text {20 }}}\right)$
10. No
13.(i) $(-1)^{n} \cdot{ }^{2 n+1} C_{n} x,(-1)^{n+1} \cdot{ }^{2 n+1} C_{n} \cdot \frac{1}{x}$
(ii) $\frac{-6435 x 3^{8} x 2^{7}}{x^{6}}, \frac{6437 x 3^{7} x 2^{8}}{x^{9}}$
11. $\frac{{ }^{18} c}{2^{9}}$
15.14 21. $n=8, x=4, a=\frac{1}{2}$
12. -438
13. $\quad 31 \mathrm{C}_{6}-{ }^{21} \mathrm{C}_{6}$
