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 BINOMIAL THEOREM  

Q.1) The 2nd, 3rd & 4th terms in the expansion of  (𝑥 + 𝑎) 𝑛 are 240, 720 & 1080. Find 𝑥, a & 
n? 

 

Sol.1) Given expansion:  (𝑥 + 𝑎) 𝑛 
𝑇2 = 240, 𝑇3 = 720 & 𝑇4 = 1080 

General term: 𝑇𝑟+1 = n𝑐𝑟𝑥𝑛−𝑟𝑎𝑟  
Now, 𝑇2= n𝑐1𝑥𝑛−1𝑎1=240 …………… (1) 
= 𝑇3= n𝑐2𝑥𝑛−2𝑎2=720 …………… (2) 
= 𝑇4= n𝑐3𝑥𝑛−3𝑎3=1080 …………… (3) 
Equation (2) ÷ equation (1) 

⇒ 𝑛𝑐2𝑥𝑛−2𝑎2

𝑛𝑐1𝑥𝑛−1𝑎1 = 
720

240
 = 3 

⇒ 
𝑛(𝑛−1)

2
.𝑥𝑛−2+𝑛+1.𝑎

𝑛
= 3 

⇒ 
(𝑛−1)𝑥−1𝑎

2
=3 

⇒ 
(𝑛−1)𝑎

2𝑥
=3 

⇒ (𝑛 − 1)𝑎 = 6𝑥 …………….. (4) 
Now, equation (3) ÷ equation (2) 

⇒ 𝑛𝑐3𝑥𝑛−3𝑎3

𝑛𝑐2𝑥𝑛−2𝑎2 = 
1080

720
 

⇒ 
𝑛(𝑛−1)(𝑛−2

6
.𝑥𝑛−3−𝑛+2.𝑎

(𝑛−1)

2

 = 
3

2
 

⇒ 
(𝑛−2).𝑥−1𝑎

3
=

3

2
 

⇒ 
(𝑛−2)𝑎

3𝑥
=

3

2
 

⇒ 2(𝑛 − 2)𝑎 = 9𝑥 ………………………. (5) 
Now, equation (5) ÷ equation (4) 

⇒ 
2(𝑛−1)𝑎

(𝑛−1)𝑎
=  

9𝑥

6𝑥
 

⇒ 
2𝑛−4

𝑛−1
=  

3

2
 

⇒ 4n-8 = 3n-3 
⇒ n=5, put this value in equation (4) 
We get, 4𝑎=6𝑥 

⇒ 𝑎 =
3𝑥

2
 , put value  of n & a in equation (1) 

We have, 5𝑐1(𝑥)4. (
3𝑥

2
) = 240 

⇒5𝑥5 3

2
 = 240 

⇒ 𝑥5 = 
240×2

15
 

⇒ 𝑥5 = 32 = 25 

⇒ 𝑥 = 2 , 𝑎 = 3 ………………… {𝑠𝑖𝑛𝑐𝑒 𝑎 =  
3𝑥

2
} 

∴ 𝑛 = 5, 𝑥 = 2 𝑎𝑛𝑑 𝑎 = 3 ans. 

 

Q.2) Find a, b & n in expansion of (𝑎 + 𝑏)𝑛, if the first three terms in the expansion are 729, 
7290 & 30375? 

 

Sol.2) Given expansion: (𝑎 + 𝑏)𝑛 
𝑇1 = 729, 𝑇2 = 7290 & 𝑇3 = 3037 

General terms : 𝑇𝑟+1 = n𝑐𝑟𝑎𝑛−𝑟𝑏𝑟 
Now, 𝑇1= n𝑐0𝑎𝑛𝑏0=729 
⇒ 𝑇1= 𝑎𝑛=729 …………… (1) 
⇒ 𝑇2= n𝑐1𝑎𝑛−1𝑏1=7290 …………………… (2) 
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⇒ 𝑇3= n𝑐2𝑎𝑛−2𝑏2=30375 …………………… (3) 
Now, equation (2) ÷ equation (1) 

⇒ 
n𝑐1𝑎𝑛−1𝑏1

𝑎𝑛 =  
7290

729
 

⇒ 𝑛. 𝑎𝑛−1−𝑛. 𝑏 = 10 

⇒ 
𝑛𝑏

𝑎
 = 10 

⇒ 𝑛𝑏 = 10𝑎 ………………………… (4) 
Now, equation (3) ÷ equation (2) 

⇒ 
n𝑐2𝑎𝑛−2𝑏2

n𝑐1𝑎𝑛−1𝑏1 = 
30375

7290
 

⇒ 
𝑛(𝑛−1)

2
.𝑎𝑛−2−𝑛+1.𝑏

𝑛
=

25

6
 

⇒ 
(𝑛−1)

2
.𝑎1.𝑏

𝑛
=

25

6
 

⇒ 
(𝑛−1)𝑏

2𝑎
=

25

6
 

⇒ 6(𝑛 − 1)𝑏 = 50𝑎 …………... (5) 
Now, equation (5) ÷ (4) 

⇒ 
6(𝑛−1)𝑏

𝑛𝑏
=

50𝑎

10𝑎
 

⇒ 6𝑛 − 6 = 5𝑛 
⇒ 𝑛 = 6, put the value of n in equation (4) 
⇒ 6𝑏 = 10𝑎 

⇒ 𝑏 =
5𝑎

3
 

Now, from equation (1) put n=3 
⇒ 𝑎6 = 729 
⇒ 𝑎6 = 36 
⇒ 𝑎 = 3 
∴ 𝑛 = 6, 𝑎 = 3 & 𝑏 = 5 ans. 

Q.3) If the coefficient of 𝑎𝑟−1, 𝑎𝑟  𝑎𝑛𝑑 𝑎𝑟+1  in the expansion of (1 + 𝑎)𝑛 are in A.P, show 
that 𝑛2 − 𝑛(4𝑟 + 1) + 4𝑟2 − 2 = 0? 

 

Sol.3) Given expansion: (1 + 𝑎)𝑛 
General term: 𝑇𝑟+1 = n𝑐𝑟(1)𝑛−𝑟𝑎𝑛 
𝑇𝑟+1 = n𝑐𝑟𝑎𝑟 
Clearly, coefficient of 𝑎𝑟 = n𝑐𝑟 
∴ coefficient of 𝑎𝑟−1 = n𝑐𝑟−1 
And coefficient of 𝑎𝑟+1= n𝑐𝑟+1 
We are given that, n𝑐𝑟−1, n𝑐𝑟 and n𝑐𝑟+1 are in A.P 
⇒ 2. n𝑐𝑟 = n𝑐𝑟−1+ n𝑐𝑟+1 

⇒ 2.
𝑛!

𝑟!(𝑛−𝑟)!
 = 

𝑛!

(𝑟−1)!(𝑛−𝑟+1)!
+

𝑛!

(𝑟+1)!(𝑛−𝑟−1)!
 

⇒ 
2

𝑟!(𝑛−𝑟)!
=

1

(𝑟−1)!(𝑛−𝑟+1)!
+

1

(𝑟+1)!(𝑛−𝑟−1)!
 

⇒ 
2

𝑟(𝑟−1)!(𝑛−𝑟−1)!
=

1

(𝑟−1)!(𝑛−𝑟+1)(𝑛−𝑟)(𝑛−𝑟−1)!
+

1

(𝑟+1)𝑟!(𝑟−1)(𝑛−𝑟+1)!
 

⇒ 
2

𝑟(𝑛−𝑟)
−

1

(𝑛−𝑟+1)(𝑛−𝑟)
=

1

(𝑟+1)𝑟
 

⇒ 
2

𝑟(𝑛−𝑟)
−

1

(𝑛−𝑟+1)(𝑛−𝑟)
=

1

(𝑟+1)
 

⇒ 
2(𝑛−𝑟+1)−𝑟

𝑟(𝑛−𝑟)(𝑛−𝑟+1)
=

1

𝑟+1
 

⇒ 2𝑛𝑟 + 2𝑛 − 3𝑟2 − 3𝑟 + 2𝑟 + 2 = 𝑛2 − 𝑛𝑟 + 𝑛 − 𝑛𝑟 + 𝑟2 − 𝑟 
⇒ 𝑛2 − 4𝑛𝑟 − 𝑛+4𝑟2 − 2 = 0 
⇒ 𝑛2 − 𝑛(4𝑟 + 1)+4𝑟2 − 2 = 0 (proved) 

 

Q.4) 
Find the 4th term from the end in the expansion of (𝑥4 −

1

𝑥3)
11

. 
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Sol.4) 
Given expansion : (𝑥4 −

1

𝑥3)
11

 

General terms: 𝑇𝑟+1 = (−1)𝑟11𝐶𝑟
(𝑥4)11−𝑟 (

1

𝑥3)
𝑟
 

⇒ 𝑇𝑟+1 = (−1)𝑟11𝐶𝑟
(𝑥)44−4𝑟 .

1

𝑥3𝑟 

⇒ 𝑇𝑟+1 = (−1)𝑟11𝐶𝑟
(𝑥)44−7𝑟 .

1

𝑥3𝑟 

Formula, 𝑟𝑡ℎ term from the end = (𝑛 − 1 + 2)𝑡ℎ term from beginning and 4𝑡ℎ term 

from the end = (11 − 4 + 2)𝑡ℎ term from beginning = 9𝑡ℎ𝑡𝑒𝑟𝑚. 
For 𝑇9, put r = 8 

⇒ 𝑇9 = (−1)811𝐶8
(𝑥)44−56 

⇒ 𝑇9 = 11𝐶3
(𝑥)−12.

1

𝑥3𝑟 ……….. {𝑛𝐶𝑟
= 𝑛𝐶𝑛−𝑟

} 

⇒ 𝑇9 = 
11×10×9

6
.

1

𝑥12 

⇒ 𝑇9 = 
165

𝑥12 

∴ 4𝑡ℎ term from the end =
165

𝑥12 ans. 

 

Q.5) Find the value of 𝑛 , if the ratio of the 5th term from the beginning to the 5th term from 

the end in the expansion of (√2
4

+
1

√3
4 )

𝑛
 is √6: 1. 

 

Sol.5) Expansion: (2
1

4⁄ +
1

3
1

4⁄
) 

General term: 𝑇𝑟+1 = n𝑐𝑟 (2
1

4⁄ )
𝑛−𝑟

(
1

3
1

4⁄
)

𝑟
 

⇒𝑇𝑟+1 = n𝑐𝑟(2)
𝑛−𝑟

4 .
1

3
𝑟

4⁄
 

5th term from the beginning, put r = 4 

⇒𝑇5 = n𝑐4(2)
𝑛−4

4 .
1

3
 

Now, 5th term from the end = (𝑛 − 5 + 2)𝑡ℎ term from the beginning= (𝑛 − 3)𝑟𝑑 term 
For 𝑇𝑛−3, put r = n-4 

⇒𝑇𝑛−3 = n𝑐𝑛−4(2)
𝑛−(𝑛−4)

4 .
1

3
𝑛−4

4

 

⇒𝑇𝑛−3 = n𝑐𝑛−4(2)1.
1

3
𝑛−4

4

 

Given, 
𝑇5

𝑇𝑛−3
 = 

√6

1
 

⇒ 
𝑛𝐶4

(2)
𝑛−4

4 .
1

3

𝑛𝐶𝑛−4
(2)1.

1

3
𝑛−4

4

=
√6

1
  

⇒ 

𝑛!

4!(𝑛−4)!
.(2)

𝑛−4
4

−1
.(3)

𝑛−4
4

𝑛!

(𝑛−4)!4!
.(3)

=
√6

1
  

⇒ (2)
𝑛−8

4 . (3)
𝑛−4

4 =√6 

⇒ (6)
𝑛−8

4  = (6)
1

2 

⇒ 
𝑛−8

4
 = 

1

2
 

⇒ 2𝑛 − 16 = 4 
⇒ 2𝑛 = 20 
⇒ 𝑛 = 10 ans. 

 

Q.6) 
Prove that there is no term including 𝑥6 in the expansion of (2𝑥2 −

3𝑥

11
)

11
? 

 

Sol.6) General terms: 𝑇𝑟+1 = (−1)𝑟11𝐶𝑟
(2𝑥2)11−𝑟 (

3

𝑥
)

𝑟
 

⇒ 𝑇𝑟+1 = (−1)𝑟11𝐶𝑟
(2)11−𝑟 . (𝑥)22−2𝑟 .

3

𝑥𝑟

𝑟
 

⇒ 𝑇𝑟+1 = (−1)𝑟11𝐶𝑟
(2)11−𝑟 . (3)𝑟 . (𝑥)22−3𝑟 
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Let 𝑥6 occurs in the (𝑟 + 1)𝑡ℎ 𝑡𝑒𝑟𝑚 then, for 𝑥6 put 22 − 3𝑟 = 6 
⇒ 3𝑟 = 16 

⇒ 𝑟 =  
16

3
 , which is in fraction but ‘r’ cannot be in fraction or negative  

∴ there is no term in the expansion which involves 𝑥6  ans. 

Q.7) If the 4th term in the expansion of (𝑎𝑥 −
1

𝑥
)

𝑛
 is 

5

2
, then find the values of ‘a’ & ‘n’?   

Sol.7) Expansion: (𝑎𝑥 −
1

𝑥
)

𝑛
 

General term: 𝑇𝑟+1 = n𝑐𝑟(𝑎𝑥)𝑛−𝑟 (
1

𝑥
)

𝑟
 

⇒  𝑇𝑟+1 = n𝑐𝑟𝑎𝑛−𝑟 . 𝑥𝑛−𝑟 .
1

𝑥𝑟 

⇒ 𝑇𝑟+1 = n𝑐𝑟𝑎𝑛−𝑟 . 𝑥𝑛−2𝑟  
For 𝑇4, put 𝑟 = 3 
⇒ 𝑇4 = n𝑐3𝑎𝑛−3. 𝑥𝑛−6 

Given that, 𝑇4 = 
5

2
 

∴ n𝑐3𝑎𝑛−3. 𝑥𝑛−6 =
5

2
 ……………. (1) 

Clearly R.H.S, of above equation is independent of 𝑥 
∴ put 𝑛 − 6 = 0 
⇒ 𝑛 = 6, put 𝑛 =6 in equation (1) 

⇒ 6𝑐3𝑎3. 𝑥0= 
5

2
 

⇒ 
6×5×4

6
. 𝑎3 =

5

2
 

⇒ 𝑎3 =
5

40
=

1

8
=

1

23
 

⇒ 𝑎3 = (
1

2
)

3
⇒ 𝑎3 =

1

2
 

∴  𝑛 = 6 & 𝑎 =
1

2
 

 

Q.8) If 𝑎1, 𝑎2, 𝑎3 𝑎𝑛𝑑 𝑎4 be the coefficient of four consecutive terms in the expansion of 

(1 + 𝑥)𝑛, then show that 
𝑎1

𝑎1+𝑎2
+

𝑎3

𝑎3+𝑎4
=

2𝑎2

𝑎2+𝑎3
? 

 

Q.8) Expansion (1 + 𝑥)𝑛 
General term: 𝑇𝑟+1 = n𝑐𝑟(1)𝑛−𝑟(𝑥)𝑟  
𝑇𝑟+1 = n𝑐𝑟𝑥𝑟 

Let the four consecutive terms are 𝑟𝑡ℎ , (𝑟 + 1)𝑡ℎ , (𝑟 + 2)𝑡ℎ and (𝑟 + 3)𝑡ℎ 
𝑇𝑟 = n𝑐𝑟−1. 𝑥𝑟−1 ⇒  coefficient of n𝑐𝑟−1= 𝑎1 
𝑇𝑟+1 = n𝑐𝑟 . 𝑥𝑟 ⇒  coefficient of n𝑐𝑟= 𝑎2 
𝑇𝑟+2 = n𝑐𝑟+1. 𝑥𝑟+1 ⇒  coefficient of n𝑐𝑟+1= 𝑎3 
𝑇𝑟+3 = n𝑐𝑟+2. 𝑥𝑟+2 ⇒  coefficient of n𝑐𝑟+2= 𝑎4 
Now, 𝑎1 + 𝑎2 = n𝑐𝑟−1 + n𝑐𝑟= n+1𝑐𝑟 
𝑎2 + 𝑎3 = n𝑐𝑟 + n𝑐𝑟+1= n+1𝑐𝑟+1 
𝑎3 + 𝑎4 = n𝑐𝑟+1+ n𝑐𝑟+2= n+1𝑐𝑟+2 
n𝑐𝑟−1 + n𝑐𝑟= n+1𝑐𝑟 (property 1) 
taking L.H.S. 

𝑎1

𝑎1 + 𝑎2
+

𝑎3

𝑎3 + 𝑎4
 

= 
𝑛𝐶𝑟−1

𝑛+1𝐶𝑟

 + 
𝑛𝐶𝑟+1

𝑛+1𝐶𝑟+2

 

= 

𝑛!

(𝑟−1)!(𝑛−𝑟+1)!
(𝑛+1)!

𝑟!(𝑛+1−𝑟)!

 + 

𝑛!

(𝑟+1)!(𝑛−𝑟−1)!
(𝑛+1)!

(𝑟+2)!(𝑛+1−𝑟−2)!

 

=  
𝑛!𝑟!

(𝑛+1)!(𝑟−1)!
 + 

𝑛!(𝑟+2)!

(𝑛+1)!(𝑟+1)!
 

= 
𝑛!𝑟(𝑟−1)!

(𝑛+1)𝑛!(𝑟−1)!
 + 

𝑛!(𝑟+2)(𝑟+1)!

(𝑛+1)𝑛!(𝑟+1)!
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= 
𝑟

𝑛+1
 + 

𝑟+2

𝑛+1
 

= 
2𝑟+2

𝑛+1
 = 

2(𝑟+1)

𝑛+1
 …………… (1) 

Taking R.H.S. 
2𝑎2

𝑎2+𝑎3
 

Do yourself and get R.H.S = 
2(𝑟+1)

𝑛+1
 ………………… (2) 

From eq. (1) and eq. (2), L.H.S. = R.H.S (proved) 
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