StudiesToday on

	BINOMIAL THEOREM
Q.1)	The $2^{\text {nd }}, 3^{\text {rd }} \& 4^{\text {th }}$ terms in the expansion of $(x+a)^{n}$ are $240,720 \& 1080$. Find $x, \mathrm{a} \&$ n ?
Sol.1)	Given expansion: $(x+a)^{n}$ $T_{2}=240, T_{3}=720 \& T_{4}=1080$ General term: $T_{r+1}={ }^{n} c_{r} x^{n-r} a^{r}$ Now, $T_{2}={ }^{n} c_{1} x{ }^{n-1} a^{1}=240$ \qquad $\begin{align*} & =T_{3}={ }^{n} c_{2} x^{n-2} a^{2}=720 . . \tag{2}\\ & =T_{4}={ }^{n} c_{3} x^{n-3} a^{3}=1080 \tag{1} \end{align*}$ Equation (2) \div equation (1) $\begin{align*} & \Rightarrow \frac{n_{c_{2}} x^{n-2} a^{2}}{n_{c_{1}} x^{n-1} a^{1}}=\frac{720}{240}=3 \\ & \Rightarrow \frac{\frac{n(n-1)}{2} \cdot x^{n-2+n+1} \cdot a}{n}=3 \\ & \Rightarrow \frac{(n-1) x^{-1} a}{2}=3 \\ & \Rightarrow \frac{(n-1) a}{2 x}=3 \\ & \Rightarrow(n-1) a=6 x \ldots . . \tag{4} \end{align*}$ Now, equation (3) \div equation (2) $\begin{align*} & \Rightarrow \frac{n_{c_{3}} x^{n-3} a^{3}}{n_{c_{2}} x^{n-2} a^{2}}=\frac{1080}{720} \\ & \Rightarrow \frac{\frac{n(n-1)(n-2}{6} \cdot x^{n-3-n+2} \cdot a}{\frac{(n-1)}{2}}=\frac{3}{2} \\ & \Rightarrow \frac{(n-2) \cdot x^{-1} a}{3}=\frac{3}{2} \\ & \Rightarrow \frac{(n-2) a}{3 x}=\frac{3}{2} \\ & \Rightarrow 2(n-2) a=9 x \ldots \ldots \tag{5} \end{align*}$ Now, equation (5) \div equation (4) $\begin{aligned} & \Rightarrow \frac{2(n-1) a}{(n-1) a}=\frac{9 x}{6 x} \\ & \Rightarrow \frac{2 n-4}{n-1}=\frac{3}{2} \\ & \Rightarrow 4 n-8=3 n-3 \end{aligned}$ $\Rightarrow \mathrm{n}=5$, put this value in equation (4) We get, $4 a=6 x$ $\Rightarrow a=\frac{3 x}{2}$, put value of $\mathrm{n} \& \mathrm{a}$ in equation (1) We have, $5 c_{1}(x)^{4} \cdot\left(\frac{3 x}{2}\right)=240$ $\begin{aligned} & \Rightarrow 5 x^{5} \frac{3}{2}=240 \\ & \Rightarrow x^{5}=\frac{240 \times 2}{15} \\ & \Rightarrow x^{5}=32=2^{5} \\ & \Rightarrow x=2, a=3 \ldots \ldots\left\{\text { since } a=\frac{3 x}{2}\right\} \\ & \therefore n=5, x=2 \text { and } a=3 \text { ans. } \end{aligned}$
Q.2)	Find $\mathrm{a}, \mathrm{b} \& \mathrm{n}$ in expansion of $(a+b)^{n}$, if the first three terms in the expansion are 729, 7290 \& 30375?
Sol.2)	Given expansion: $(a+b)^{n}$ $T_{1}=729, T_{2}=7290 \& T_{3}=3037$ General terms: $T_{r+1}={ }^{\mathrm{n}} c_{r} a^{n-r} b^{r}$ Now, $T_{1}={ }^{n} c_{0} a^{n} b^{0}=729$ $\begin{align*} & \Rightarrow T_{1}=a^{n}=729 \ldots \tag{1}\\ & \Rightarrow T_{2}={ }^{n} c_{1} a^{n-1} b^{1}=7290 \end{align*}$ \qquad

	$\begin{equation*} \Rightarrow T_{3}={ }^{n} c_{2} a^{n-2} b^{2}=30375 \tag{3} \end{equation*}$ Now, equation (2) \div equation (1) $\begin{align*} & \Rightarrow \frac{\mathrm{n}_{c_{1}} a^{n-1} b^{1}}{a^{n}}=\frac{7290}{729} \\ & \Rightarrow n \cdot a^{n-1-n} \cdot b=10 \\ & \Rightarrow \frac{n b}{a}=10 \\ & \Rightarrow n b=10 a \tag{4} \end{align*}$ Now, equation (3) \div equation (2) $\begin{align*} & \Rightarrow \frac{\frac{\mathrm{n}_{c_{2}} a^{n-2} b^{2}}{\mathrm{n}_{c_{1}} a^{n-1} b^{1}}=\frac{30375}{7290}}{\Rightarrow \frac{\frac{n(n-1)}{2} \cdot a^{n-2-n+1} \cdot b}{n}=\frac{25}{6}} \\ & \Rightarrow \frac{\frac{(n-1)}{2} \cdot a^{1} \cdot b}{n}=\frac{25}{6} \\ & \Rightarrow \frac{(n-1) b}{2 a}=\frac{25}{6} \\ & \Rightarrow 6(n-1) b=50 a \ldots . . \end{align*}$ Now, equation (5) \div (4) $\begin{aligned} & \Rightarrow \frac{6(n-1) b}{n b}=\frac{50 a}{10 a} \\ & \Rightarrow 6 n-6=5 n \end{aligned}$ $\Rightarrow n=6, \text { put the value of } \mathrm{n} \text { in equation (4) }$ $\Rightarrow 6 b=10 a$ $\Rightarrow b=\frac{5 a}{3}$ Now, from equation (1) put $\mathrm{n}=3$ $\begin{aligned} & \Rightarrow a^{6}=729 \\ & \Rightarrow a^{6}=3^{6} \\ & \Rightarrow a=3 \\ & \therefore n=6, a=3 \& b=5 \text { ans. } \end{aligned}$
Q.3)	If the coefficient of a^{r-1}, a^{r} and a^{r+1} in the expansion of $(1+a)^{n}$ are in A.P, show that $n^{2}-n(4 r+1)+4 r^{2}-2=0$?
Sol.3)	Given expansion: $(1+a)^{n}$ General term: $T_{r+1}={ }^{n} c_{r}(1)^{n-r} a^{n}$ $T_{r+1}={ }^{n} c_{r} a^{r}$ Clearly, coefficient of $a^{r}={ }^{n} c_{r}$ \therefore coefficient of $a^{r-1}={ }^{n} c_{r-1}$ And coefficient of $a^{r+1}={ }^{n} c_{r+1}$ We are given that, ${ }^{\mathrm{n}} c_{r-1},{ }^{\mathrm{n}} c_{r}$ and ${ }^{\mathrm{n}} c_{r+1}$ are in A.P $\begin{aligned} & \Rightarrow 2 \cdot{ }^{\mathrm{n}} c_{r}={ }^{\mathrm{n}} c_{r-1}+{ }^{\mathrm{n}} c_{r+1} \\ & \Rightarrow 2 \cdot \frac{n!}{r!(n-r)!}=\frac{n!}{(r-1)!(n-r+1)!}+\frac{n!}{(r+1)!(n-r-1)!} \\ & \Rightarrow \frac{2}{r!(n-r)!}=\frac{1}{(r-1)!(n-r+1)!}+\frac{1}{(r+1)!(n-r-1)!} \\ & \Rightarrow \frac{2}{r(r-1)!(n-r-1)!}=\frac{1}{(r-1)!(n-r+1)(n-r)(n-r-1)!}+\frac{1}{(r+1) r!(r-1)(n-r+1)!} \\ & \Rightarrow \frac{2}{r(n-r)}-\frac{1}{(n-r+1)(n-r)}=\frac{1}{(r+1) r} \\ & \Rightarrow \frac{2}{r(n-r)}-\frac{1}{(n-r+1)(n-r)}=\frac{1}{(r+1)} \\ & \Rightarrow \frac{2(n-r+1)-r}{r(n-r)(n-r+1)}=\frac{1}{r+1} \\ & \Rightarrow 2 n r+2 n-3 r^{2}-3 r+2 r+2=n^{2}-n r+n-n r+r^{2}-r \\ & \Rightarrow n^{2}-4 n r-n+4 r^{2}-2=0 \\ & \Rightarrow n^{2}-n(4 r+1)+4 r^{2}-2=0 \text { (proved) } \end{aligned}$
Q.4)	Find the $4^{\text {th }}$ term from the end in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{11}$.

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday on

Sol.4)	Given expansion : $\left(x^{4}-\frac{1}{x^{3}}\right)^{11}$ General terms: $T_{r+1}=(-1)^{r} 11_{C_{r}}\left(x^{4}\right)^{11-r}\left(\frac{1}{x^{3}}\right)^{r}$ $\begin{aligned} & \Rightarrow T_{r+1}=(-1)^{r} 11_{C_{r}}(x)^{44-4 r} \cdot \frac{1}{x^{3 r}} \\ & \Rightarrow T_{r+1}=(-1)^{r} 11_{C_{r}}(x)^{44-7 r} \cdot \frac{1}{x^{3 r}} \end{aligned}$ Formula, $r^{\text {th }}$ term from the end $=(n-1+2)^{\text {th }}$ term from beginning and $4^{\text {th }}$ term from the end $=(11-4+2)^{\text {th }}$ term from beginning $=9^{\text {th }}$ term. For T_{9}, put $\mathrm{r}=8$ $\begin{aligned} & \Rightarrow T_{9}=(-1)^{8} 11_{C_{8}}(x)^{44-56} \\ & \Rightarrow T_{9}=11_{C_{3}}(x)^{-12} \cdot \frac{1}{x^{3 r}} \ldots \ldots \ldots . .\left\{n_{C_{r}}=n_{C_{n-r}}\right\} \\ & \Rightarrow T_{9}=\frac{11 \times 10 \times 9}{6} \cdot \frac{1}{x^{12}} \\ & \Rightarrow T_{9}=\frac{165}{x^{12}} \\ & \therefore 4^{\text {th }} \text { term from the end }=\frac{165}{x^{12}} \text { ans. } \end{aligned}$
Q.5)	Find the value of n, if the ratio of the $5^{\text {th }}$ term from the beginning to the $5^{\text {th }}$ term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}$: 1 .
Sol.5)	Expansion: $\left(2^{1 / 4}+\frac{1}{3^{1 / 4}}\right)$ General term: $T_{r+1}={ }^{n} c_{r}\left(2^{1 / 4}\right)^{n-r}\left(\frac{1}{3^{1 / 4}}\right)^{r}$ $\Rightarrow T_{r+1}={ }^{\mathrm{n}} c_{r}(2)^{\frac{n-r}{4}} \cdot \frac{1}{3^{r} / 4}$ $5^{\text {th }}$ term from the beginning, put $r=4$ $\Rightarrow T_{5}={ }^{n} c_{4}(2)^{\frac{n-4}{4}} \cdot \frac{1}{3}$ Now, $5^{\text {th }}$ term from the end $=(n-5+2)^{\text {th }}$ term from the beginning $=(n-3)^{r d}$ term For T_{n-3}, put $\mathrm{r}=\mathrm{n}-4$ $\begin{aligned} & \Rightarrow T_{n-3}={ }^{n} c_{n-4}(2)^{\frac{n-(n-4)}{4}} \cdot \frac{1}{3^{\frac{n-4}{4}}} \\ & \Rightarrow T_{n-3}={ }^{n} c_{n-4}(2)^{1} \cdot \frac{1}{3^{\frac{n-4}{4}}} \end{aligned}$ Given, $\frac{T_{5}}{T_{n-3}}=\frac{\sqrt{6}}{1}$ $\Rightarrow \frac{n_{C_{4}}(2)^{\frac{n-4}{4}} \cdot \frac{1}{3}}{n_{C_{n-4}}(2)^{1} \cdot \frac{1}{n-4}}=\frac{\sqrt{6}}{1}$ $\Rightarrow \frac{\frac{n!}{4!(n-4)!}(2)^{\frac{3-4}{4}-1} \cdot(3)^{\frac{n-4}{4}}}{\frac{n!}{(n-4)!4!} \cdot(3)}=\frac{\sqrt{6}}{1}$ $\Rightarrow(2)^{\frac{n-8}{4}} \cdot(3)^{\frac{n-4}{4}}=\sqrt{6}$ $\Rightarrow(6)^{\frac{n-8}{4}}=(6)^{\frac{1}{2}}$ $\Rightarrow \frac{n-8}{4}=\frac{1}{2}$ $\Rightarrow 2 n-16=4$ $\Rightarrow 2 n=20$ $\Rightarrow n=10 \text { ans. }$
Q.6)	Prove that there is no term including x^{6} in the expansion of $\left(2 x^{2}-\frac{3 x}{11}\right)^{11}$?
Sol.6)	$\begin{aligned} & \text { General terms: } T_{r+1}=(-1)^{r} 11_{C_{r}}\left(2 x^{2}\right)^{11-r}\left(\frac{3}{x}\right)^{r} \\ & \Rightarrow T_{r+1}=(-1)^{r} 11_{C_{r}}(2)^{11-r} \cdot(x)^{22-2 r} \cdot \frac{3}{x^{r}} \\ & \Rightarrow T_{r+1}=(-1)^{r} 11_{C_{r}}(2)^{11-r} \cdot(3)^{r} \cdot(x)^{22-3 r} \end{aligned}$

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday on

	Let x^{6} occurs in the $(r+1)^{\text {th }}$ term then, for x^{6} put $22-3 r=6$ $\Rightarrow 3 r=16$ $\Rightarrow r=\frac{16}{3}$, which is in fraction but ' r ' cannot be in fraction or negative \therefore there is no term in the expansion which involves x^{6} ans.
Q.7)	If the $4^{\text {th }}$ term in the expansion of $\left(a x-\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, then find the values of ' a ' \& n '?
Sol.7)	Expansion: $\left(a x-\frac{1}{x}\right)^{n}$ General term: $T_{r+1}={ }^{n} c_{r}(a x)^{n-r}\left(\frac{1}{x}\right)^{r}$ $\begin{aligned} & \Rightarrow T_{r+1}={ }^{n} c_{r} a^{n-r} \cdot x^{n-r} \cdot \frac{1}{x^{r}} \\ & \Rightarrow T_{r+1}={ }^{n} c_{r} a^{n-r} \cdot x^{n-2 r} \end{aligned}$ For T_{4}, put $r=3$ $\Rightarrow T_{4}={ }^{n} c_{3} a^{n-3} \cdot x^{n-6}$ Given that, $T_{4}=\frac{5}{2}$ $\begin{equation*} \therefore{ }^{\mathrm{n}} c_{3} a^{n-3} \cdot x^{n-6}=\frac{5}{2} \tag{1} \end{equation*}$ Clearly R.H.S, of above equation is independent of x $\therefore \text { put } n-6=0$ $\Rightarrow n=6$, put $n=6$ in equation (1) $\Rightarrow{ }^{6} c_{3} a^{3} \cdot x^{0}=\frac{5}{2}$ $\Rightarrow \frac{6 \times 5 \times 4}{6} \cdot a^{3}=\frac{5}{2}$ $\Rightarrow a^{3}=\frac{5}{40}=\frac{1}{8}=\frac{1}{23}$ $\Rightarrow a^{3}=\left(\frac{1}{2}\right)^{3} \Rightarrow a^{3}=\frac{1}{2}$ $\therefore n=6 \& a=\frac{1}{2}$
Q.8)	If a_{1}, a_{2}, a_{3} and a_{4} be the coefficient of four consecutive terms in the expansion of $(1+x)^{n}$, then show that $\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}=\frac{2 a_{2}}{a_{2}+a_{3}}$?
Q.8)	Expansion $(1+x)^{n}$ General term: $T_{r+1}={ }^{\mathrm{n}} c_{r}(1)^{n-r}(x)^{r}$ $T_{r+1}={ }^{n} c_{r} x^{r}$ Let the four consecutive terms are $r^{t h},(r+1)^{t h},(r+2)^{t h}$ and $(r+3)^{t h}$ $T_{r}={ }^{\mathrm{n}} c_{r-1} \cdot x^{r-1} \Rightarrow$ coefficient of ${ }^{\mathrm{n}} c_{r-1}=a_{1}$ $T_{r+1}={ }^{\mathrm{n}} c_{r} . x^{r} \Rightarrow$ coefficient of ${ }^{\mathrm{n}} c_{r}=a_{2}$ $T_{r+2}={ }^{n} c_{r+1} \cdot x^{r+1} \Rightarrow$ coefficient of ${ }^{n} c_{r+1}=a_{3}$ $T_{r+3}={ }^{n} c_{r+2} \cdot x^{r+2} \Rightarrow$ coefficient of ${ }^{n} c_{r+2}=a_{4}$ Now, $a_{1}+a_{2}={ }^{\mathrm{n}} c_{r-1}+{ }^{\mathrm{n}} c_{r}={ }^{\mathrm{n}+1} c_{r}$ $a_{2}+a_{3}={ }^{\mathrm{n}} c_{r}+{ }^{\mathrm{n}} c_{r+1}={ }^{\mathrm{n+1}} c_{r+1}$ $a_{3}+a_{4}={ }^{\mathrm{n}} c_{r+1}+{ }^{\mathrm{n}} c_{r+2}={ }^{\mathrm{n}+1} c_{r+2}$ ${ }^{\mathrm{n}} c_{r-1}+{ }^{\mathrm{n}} c_{r}={ }^{\mathrm{n}+1} c_{r}$ (property 1) taking L.H.S. $\begin{aligned} & \frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}} \\ & =\frac{n_{C_{r-1}}}{n+1}+\frac{n_{C_{r+1}}}{n+1} c_{r+2} \\ & =\frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{(n+1)!}{r!(n+r)!}}+\frac{n!}{\frac{(r+1)!(n-r-1)!}{(n+1)!}} \\ & =\frac{n!r)}{(n+2)!(n+1-r-2)!} \\ & =\frac{n!r(r-1)!}{(n+1) n!(r-1)!}+\frac{n!(r+2)!}{(n+1)!(r+1)!} \\ & (n+1) n!(r+1)! \end{aligned}$

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday

$$
\begin{array}{|l|l}
\hline & =\frac{r}{n+1}+\frac{r+2}{n+1} \\
=\frac{2 r+2}{n+1}=\frac{2(r+1)}{n+1} \ldots ~(1) ~
\end{array} \quad \begin{aligned}
& \text { Taking R.H.S. } \frac{2 a_{2}}{a_{2}+a_{3}} \\
& \text { Do yourself and get R.H.S }=\frac{2(r+1)}{n+1} \ldots ~(2) ~ \\
& \text { From eq. (1) and eq. (2), L.H.S. }=\text { R.H.S (proved) }
\end{aligned}
$$

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

