

BINOMIAL THEOREM

	QUESTIONS BASED ON "GENERAL TERMS"
Q.1)	Find the positive value of 'm' for which the coefficient of x^2 in the expansion of
	$(1+x)^m$ is 6?
mcqs	a) 6 b) 9 c) 4 d) 1
Sol.1)	Given expansion: $(1+x)^m$ coefficient of $x^2 = 6$
	To find: m
	General term: $T_{r+1} = {}^{m}c_{r}(1)^{m-r}x^{r} = T_{r+1} = {}^{m}c_{r}x^{r}$
	For x^2 put r=2
	$T_3 = {}^{\mathrm{m}}c_2 x^r$
	Here, coefficient of $x^2 = 6$
	\Rightarrow $^{m}c_2 = 6$
	$\Rightarrow \frac{m(m-1)}{2} = 6$
	<u> </u>
	$\Rightarrow m^2\text{-m-12=0}$
	$\Rightarrow (m-4)(m+3) = 0$
	⇒ m=4 or m= -3
	but m cannot negative(-) ∴ m ≠ -3
<u> </u>	∴ m= 4 ans.
Q.2)	If the coefficient of $(r-5)^{th}$ and $(2r-1)^{th}$ terms in this expansion of $(1+x)^{34}$ are
	equal. Find the value of 'r'?
mcqs	a) 14 b) 10 c) 12 d) 20
Sol.2)	Given expansion: $(1+x)^{34}$
	Coefficient of $T_{r-5} = T_{2r-1}$
	To find 'r'
	General term: $T_{r+1} = {}^{34}c_r x^2 (1)^{34-r} x^r$ = $T_{r+1} = {}^{34}c_r x^2$
	For T_{r-5} , put $r = r-6$
	$\therefore T_{r-5} = {}^{34}c_{r-6} x^{r-6}$
	Here coefficient of $T_{r-5} = {}^{34}C_{r-6}$
	For T_{2r-1} , put $r = 2r-2$
	$\therefore T_{2r-2} = {}^{34}c_{2r-2} x^{2r-2}$
	Here coefficient of $T_{2r-1} = {}^{34}c_{2r-2}$
	We are given that, coefficients are equal $\Rightarrow {}^{34}c_{r-6} = {}^{34}c_{2r-2}$
	$\Rightarrow c_{r-6} - c_{2r-2}$ $\Rightarrow r-6 + 2r-2 = 34(if {}^{n}c_{x} = {}^{n}c_{y} then x+y=n or x=y)$
	(Or) r-6 = 2r-2
	$\Rightarrow 3r=42 \text{ or } r-4 \text{ but 'r' cannot be negative(-)}$
	\Rightarrow r=14 ans.
Q.3)	
Q.3)	Find the term independent of x in the expansion of $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^6$?
mcqs	
	a) $\frac{-9}{}$ b) $\frac{5}{}$ c) 10 d) $\frac{2}{}$
Sol.3)	a) $\frac{-9}{1}$ b) $\frac{5}{12}$ c) 10 d) $\frac{2}{8}$ General term is given by $T_{r+1} = (-1)^r \cdot {}^6C_r \cdot \frac{(3)^{6-2r}}{2^{6-r}} \cdot x^{12-3r}$
,	General term is given by $I_{r+1} = (-1)^r$. $C_r = \frac{1}{2^{6-r}}$. $X^{2-r} = \frac{1}{2^{6-r}}$
	For independent term of x i.e. x^0 , put 12-3r = 0
	$\Rightarrow r = 4$
	$\therefore T_5 = (-1)^4 \cdot {}^6C_4 \cdot {}^{(3)^{6-8}} \cdot x^0$
	$= {}^{6}c_{2} \frac{(3)^{-2}}{2^{2}} \dots (6c_{4} = 6c_{2})$
	22 22

	$=\frac{6\times5}{2}\times\frac{1}{9\times4}=\frac{5}{12}$
	\therefore 5 th term is the independent term of x and is given by $\frac{5}{12}$ ans.
Q.4)	Find the value of 'a' so that the term independent of 'x' in $\left(\sqrt{x} + \frac{a}{x^2}\right)^{10}$ is 405?
Mcqs	a) $a^2 = \frac{40 \times 9}{8 \times 11}$ b) $a^2 = \frac{-405 \times 2}{9 \times 10}$
	c) $a^2 = \frac{405 \times 2}{0 \times 10}$ d) $a^2 = \frac{205 \times 2}{0 \times 10}$
Sol.4)	Given expansion: $\left(x^{1/2} + \frac{a}{x^2}\right)^{10}$
	Independent term of $x = 405$
	To find 'a'
	General term: $T_{r+1} = {}^{10}c_r \left(x^{1/2}\right)^{10-r} \cdot \frac{a^r}{x^{2r}}$
	$\Rightarrow T_{r+1} = {}^{10}c_r(x)^{\frac{10-r}{2}-2r} \cdot \frac{a^r}{x^{2r}}$
	$\Rightarrow T_{r+1} = {}^{10}c_r (x)^{\frac{10-r}{2}-2r} . a^r$
	$\Rightarrow T_{r+1} = {}^{10}C_r(x)^{\frac{10-5r}{2}}. a^r$
	Now, for independent term of x i.e. x^0 , Put $\frac{10-5r}{2}=0$
	Now, for independent term of x i.e. x° , Put $\frac{1}{2} = 0$ $\Rightarrow r = 2$ $\therefore T_3 = {}^{10}c_2(x)^0$. a^2 $T_3 = {}^{10}c_2 a^2$ Also independent term of $x = 405$ (given)
	$T_3 = {}^{10}C_2 a^2$
	Also macpendent term of x = 405(given)
	$\Rightarrow {}^{10}C_2 \ \alpha^2 = 405$ $\Rightarrow {}^{10\times 9}_2 \ \alpha^2 = 405$
Q.5)	$\Rightarrow a^2 = \frac{405 \times 2}{9 \times 10} \text{ ans.}$
Q.3)	Find the middle terms in the expansion of $\left(3x - \frac{x^3}{6}\right)^2$?
Mcqs	e) $42x^{13}$ and 35 f) $\frac{-105}{x^{13}}$ and $\frac{35}{x^{15}}$
	$\frac{1}{1}$
Sol E)	g) $\frac{25}{72}x^{13}$ and $\frac{30}{48}$ h) $\frac{-8}{10}x^{1}$ and $\frac{35}{8}x^{5}$
Sol.5)	Given expansion: $\left(3x - \frac{x^3}{6}\right)^7$
	To find 'middle term'
	Since, power is odd, \therefore there are two middle terms = $\left(\frac{n+1}{2}\right)^{th}$ and $\left(\frac{n+3}{2}\right)^{th}$
	i.e. $\left(\frac{7+1}{2}\right)^{th}$ and $\left(\frac{7+3}{2}\right)^{th}$
	\Rightarrow 4 th and 5 th terms
	General term: $T_{r+1} = (-1)^{r} {}^{7}c_{r} (3x)^{7-r} \left(\frac{x^{3}}{6}\right)^{2}$
	$=(-1)^{r} {}^{7}c_{r} (3)^{7-r} \cdot x^{7-r} \cdot \frac{x^{3r}}{6^{r}}$
	$= T_{r+1} = (-1)^{r} {}^{7}c_{r} \frac{(3)^{7-r}}{6^{r}} x^{7+2r}$
	For T_4 , put $r = 3$
	$= T_3 = (-1)^r {}^7 c_3 \frac{(3)^4}{6^3} x^{7+6}$
	$= \frac{-7 \times 6 \times 5}{6} \times \frac{81}{216} \chi^{13}$
	$= T_4 = \frac{-105}{8} \chi^{13}$
	For T_5 , put $r = 4$
	$ \therefore T_5 = (-1)^r {}^7C_4 \frac{(3)^3}{6^4} x^{7+8} $

	$=T_5=\frac{35}{48}x^{15}$
	∴ the middle terms are $\frac{-105}{8}x^{13}$ and $\frac{35}{48}x^{15}$ ans.
Q.6)	Show that the middle term in the expansion of $(1+x)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1) \cdot 2^n \cdot x^n}{n!}$?
Mcqs	a) False b) True c) Not proved d) Negative
Sol.6)	Given expansion $(1+x)^{2n}$
3007	Since, power $(2n)$ is even, only 1 middle term = $\left(\frac{2n}{2} + 1\right)^{th}$ = $(n+1)^{th}$ terms
	General term: $T_{r+1} = {}^{2n}c_rx^r$ For T_{n+1} , put $r = n$
	$= T_{n+1} = {}^{2n}c_n x^n$
	$=\frac{(2n)!}{n!m!}x^n$
	$n!n!$ 1.2.3.4.5.6(2n-1).(2 ⁿ). x^n
	$=\frac{n!n!}{1.2.3.4.5.6(2n-1).(2^n).x^n}$ $=\frac{[1.3.5(2n-1)][2.4.6(2^n)x^n]}{n!n!}$ $=\frac{[1.3.5(2n-1)].2^n(1.2.3n).x^n}{n!n!}$ $=\frac{1.3.5(2n-1).2^n.n!.x^n}{n!n!}$ $=T_{n+1} = \frac{1.3.5(2n-1).2^n.x^n}{n!} \text{ ans.}$
	$= \frac{[1.5.5(2n-1)][2.4.6(2-1)x]}{n!n!}$
	$= \frac{[1.3.5(2n-1)].2^n (1.2.3n).x^n}{n!n!}$
	$= \frac{1.3.5(2n-1).2^{n}.n!.x^{n}}{1.3.5(2n-1).2^{n}.n!.x^{n}}$
	n!n! 1.3.5(2n-1).2 ⁿ .x ⁿ
\	$=I_{n+1}={n!} \text{ ans.}$
Q.7)	Show that the coefficient of the middle terms in the expansion of $(1+x)^{2n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1+x)^{2n-1}$?
	the sum of the coefficients of two findule terms in the expansion of $(1+x)$
	For mcqs is it true or false?
Mcqs	e) True f) False g) Negative h) Positive
Sol.7)	1^{st} expansion : $(1+x)^{2n}$
	Since, power $(2n)$ is even , only 1 middle term
	$=\left(\frac{2n}{2}+1\right)^{th}=(n+1)^{th}$ term
	General term: $T_{r+1} = {}^{2n}c_rx^r$
	For I_{n+1} , put $r = n$
	$= T_{n+1} = {}^{2n}C_nx^n \dots (coefficient = {}^{2n}C_n)$ $2^{nd} \text{ expansion: } (1+x)^{2n-1}$
	Since, power $(2n-1)$ is odd , only 2 middle terms
	$= \left(\frac{2n-1+1}{2}\right)^{th} = \left(\frac{2n-1+3}{2}\right)^{th} \text{ term}$
	$= n^{th} \text{ and } (n+1)^{th} \text{ terms}$ General term: $T_{r+1} = {}^{2n-1}c_rx^r$
	For T_n , put $r = n-1$
	$\therefore T_n = {}^{2n-1}c_{n-1} x^{n-1}$
	Coefficient = ${}^{2n-1}c_{n-1}$
	For T_{n+1} , put $r = n$
	Now, we have to prove that
	$^{2n}C_n = ^{2n-1}C_{n-1} + ^{2n-1}C_n$
	$R.H.S = {}^{2n-1}C_{n-1} + {}^{2n-1}C_n$
	$= {}^{2n-1+1}c_n \dots ({}^{n}c_r + {}^{n}c_{r-1} = {}^{n+1}c_r)$
0.01	$= {}^{2n}c_n = \text{L.H.S (proved)}$
Q.8)	Prove that the coefficient of x^n is the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$?
	λ in the expansion of $(1 \pm \lambda)$?

	For mcqs is it true or false?
Mcqs	i) True j) False k) Negative l) Positive
Sol.8)	1 st expansion: $(1+x)^{2n}$
301.0)	General term: $T_{r+1} = {}^{2n}c_rx^r$
	For x^n , put $r = n$
	$=T_{n+1}={}^{2n}c_nx^n$
	Coefficient of $x^n = {}^{2n}c_n$
	2^{nd} expansion: $(1+x)^{2n-1}$
	General term: $T_{r+1} = {}^{2n-1}c_rx^r$
	For x^n , put $r = n$
	$= T_{n+1} = {}^{2n-1}c_nx^n$
	Coefficient of $x^n = {}^{2n-1}c_n$
	Now, we have to prove that
	$= {}^{2n}c_n = 2({}^{2n-1}c_n)$
	$R.H.S = 2.^{2n-1}c_n$
	$= \frac{2(2n-1)!}{n!(n-1)!} \dots (1)$
	$L.H.S = {}^{2n}C_n$
	$=\frac{(2n)!}{n!n!} = \frac{(2n)(2n-1)!}{n!n(n-1)!}$
	$ \begin{array}{ccc} & n!n! & n!n(n-1)! \\ & 2(2n-1)! & & & & \\ \end{array} $
	$=\frac{2(2n-1)!}{n!(n-1)!}$ (2)
	From (1) & (2) , R.H.S = L.H.S (proved)
Q.9)	The sum of the coefficients of the 1 st three terms in the expansion of $\left(x - \frac{3}{x^2}\right)^m$ is 559.
	Find the term containing x^3 in the expansion?
mcqs	a) $2582x^3$ b) $-5940x^3$ c) 5900 d) $5940x^3$
Sol.9)	a) $2582x^3$ b) $-5940x^3$ c) 5900 d) $5940x^3$ Given expansion: $\left(x - \frac{3}{x^2}\right)^m$
00.137	Given expansion: $\left(x - \frac{1}{x^2}\right)$
	To find m
	General term: $T_{r+1} = (-1)^r {}^{\text{m}} c_r (x)^{m-r} \left(\frac{3}{x^2}\right)^2$
	$= (-1)^{r} {}^{m} c_{r} (x)^{m-r} \frac{3^{r}}{r^{2r}}$
	A
	$= T_{r+1} = (-1)^r {}^m c_r (3)^r (x)^{m-3r}$
	For T_1 , put $r = 0$
	$= T_1 = (-1)^{0 \text{ m}} c_0 (3)^0 (x)^m$
	$=T_1=x^m$
	$\therefore \text{ coefficient of } T_1 = 1$
	For T_2 , put $r = 1$
	$= T_2 = (-1)^{1} {}^{m}c_1 3^{1} x^{m-3}$
	$=T_2=-(m)(3) x^{m-3}$
	$\therefore \text{ coefficient of } T_2 = -3m$
	For T_3 put $r = 2$
	$= T_3 = (-1)^{2} {}^{m}c_2 3^2 x^{m-6}$
	$=T_3 = mc_2.9 \ x^{m-6}$
	$=T_3 = \frac{9m(m-1)}{2} \chi^{m-6}$
	\therefore coefficient of $T_3 = \frac{9m(m-1)}{2}$
	We are given that,
	$1 - 3m + \frac{9m(m-1)}{2} = 559$
	$\Rightarrow 2 - 6m + 9m^2 - 9m = 1118$
	$\Rightarrow 9m^2 - 15m - 116 = 0$
	$\Rightarrow 3m^2 - 5m - 372 = 0 \text{ (divide by 3)}$
	5 5.12 5 (divide 5) 5)

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

a = 3, b = -5, c = -375	
By quadratic formula,	
$m = \frac{5 \pm \sqrt{25 + (4)(3)(372)}}{2 \times 3}$	
$m = \frac{5 \pm \sqrt{4489}}{6}$ $m = \frac{5 \pm 67}{6}$	
6 5+67	
$m = \frac{3\pm 6}{6}$	
$m = \frac{5+67}{5}$, $m = \frac{5-67}{6}$	
72 –62	
$m = \frac{72}{6}$, $m = \frac{-62}{6}$	
m= -12 (since power (m) cannot –ve)	
∴ general term becomes	
$=T_{r+1}=(-1)^{r} {}^{12}c_r (3)^r (x)^{12-3r}$	
For x^3 , put r=3	
$T_4 = (-1)^{3} {}^{12}c_3 (3)^3 x^3$	
$=\frac{-12\times11\times10}{6}\times27\times x^3=-5940x^3$ ans.	
The coefficients of three consecutive terms in the expansion of $(1+a)^n$ are in rati	О
1:7:42. Find the value of 'n'?	
a) 33 b) 26 c) 55 d) 78	
Given expansion: $(1+a)^n$	
General term: $T_{r+1} = {}^{n}c_{r}a^{r}$	
Let the three consecutive terms are $(r-1)^{th}$, $(r)^{th}$ and $(r+1)^{th}$ term	
For T_{r-1} , put r= r-2	
· · · · · · · · · · · · · · · · · · ·	
$\therefore T_{r-1} = {}^{n}c_{r-2}a^{r-2}$	
Coefficient of $T_{r-1} = {}^{n}c_{r-2}$	
For T_r , put r= r-1	
$\therefore T_r = {}^{n} c_{r-1} a^{r-1}$	
Coefficient of $T_r = {}^{n}c_{r-1}$	
$T_{r+1} = {}^{n}c_r a^r$	
Coefficient of $T_{r+1} = {}^{n}c_{r}$	
We are given that,	
$^{n}c_{r-2}: ^{n}c_{r-1}: ^{n}c_{r} = 1:7:42$	
consider, $\frac{n_{c_{r-2}}}{n_{c_{r-1}}} = \frac{1}{7}$	
$n_{c_{r-1}}$ 7	
$\Rightarrow \frac{\frac{n!}{(r-2)!(n-r+2)!}}{\frac{n!}{n!}} = \frac{1}{7}$	
$\frac{(r-1)!(n-r+1)!}{(r-1)!(n-r+1)!}$	
$\Rightarrow \frac{(r-1)!(n-r+1)!}{(r-2)!(n-r+2)!} = \frac{1}{7}$	
$\Rightarrow \frac{(r-1)}{(n-r+2)!} = \frac{1}{7}$	
$\Rightarrow 7r-7 = n-r+2$	
$\Rightarrow 8r-9 = n(1)$	
Now, consider $\frac{n_{c_{r-1}}}{n_{c_r}} = \frac{7}{42}$	
$\Rightarrow \frac{\stackrel{n!}{(r-1)!(n-r+1)!}}{\stackrel{n!}{\underline{n!}}} = \frac{1}{6}$	
(r)!(n-r)!	
r!(n-r)! 1	
_ ` _ ′ _ = -	
$\Rightarrow \frac{r!(n-r)!}{(r-1)!(n-r+1)!} = \frac{1}{6}$	
$\Rightarrow \frac{\sqrt{r-1}!(n-r+1)!}{6} = \frac{r(r-1)!(n-r)!}{6}$ $\Rightarrow \frac{r(r-1)!(n-r)!}{(n-1)!(n-r)!} = \frac{1}{6}$	
$\Rightarrow \frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!} = \frac{1}{6}$	
$\Rightarrow \frac{\sqrt{r-1}!(n-r+1)!}{(r-1)!(n-r)!} = \frac{1}{6}$ $\Rightarrow \frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!} = \frac{1}{6}$ $\Rightarrow \frac{r}{n-r+1} = \frac{1}{6}$	
$\Rightarrow \frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!} = \frac{1}{6}$	

From (1) and (2), 8r-9 = 7r - 1 $\Rightarrow r=8$, put in eq. (1) $\Rightarrow n=56-1=55$ ans.

MMM studiestoday.com