StudiesToday om

BINOMIAL THEOREM

	QUESTIONS BASED ON "GENERAL TERMS"
Q.1)	Find the positive value of ' m ' for which the coefficient of x^{2} in the expansion of $(1+x)^{m}$ is 6 ?
mcqs	$\begin{array}{lllll}\text { a) } 6 & \text { b) } 9 & \text { c) } 4 & \text { d) } 1\end{array}$
Sol.1)	Given expansion: $(1+x)^{m}$ coefficient of $x^{2}=6$ To find: m General term: $T_{r+1}={ }^{m} c_{r}(1)^{m-r} x^{r}=T_{r+1}={ }^{m} c_{r} x^{r}$ For x^{2} put $\mathrm{r}=2$ $\therefore \quad T_{3}={ }^{m} c_{2} x^{r}$ Here, coefficient of $x^{2}=6$ $\begin{aligned} & \Rightarrow{ }^{m} c_{2}=6 \\ & \Rightarrow \frac{m(m-1)}{2}=6 \\ & \Rightarrow m^{2}-m-12=0 \\ & \Rightarrow(m-4)(m+3)=0 \\ & \Rightarrow m=4 \text { or } m=-3 \end{aligned}$ but m cannot negative(-) $\therefore \mathrm{m} \neq-3$ $\therefore \mathrm{m}=4 \text { ans. }$
Q.2)	If the coefficient of $(r-5)^{t h}$ and $(2 r-1)^{t h}$ terms in this expansion of $(1+x)^{34}$ are equal. Find the value of ' r '?
mcqs	$\begin{array}{cccc}\text { a) } 14 & \text { b) } 10 & \text { c) } 12 & \text { d) } 20\end{array}$
Sol.2)	Given expansion: $(1+x)^{34}$ Coefficient of $T_{r-5}=T_{2 r-1}$ To find ' r ' General term: $T_{r+1}={ }^{34} c_{r} x^{2}(1)^{34-\hat{r}} x^{r}$ $=T_{r+1}={ }^{34} c_{r} x^{2}$ For T_{r-5}, put r = r-6 $\therefore T_{r-5}={ }^{34} c_{r-6} x^{r-6}$ Here coefficient of $T_{r-5}={ }^{34} c_{r-6}$ For $T_{2 r-1}$, put r $=2 r-2$ $\therefore T_{2 r-2}={ }^{34} c_{2 r-2} x^{2 r-2}$ Here coefficient of $T_{2 r-1}={ }^{34} c_{2 r-2}$ We are given that, coefficients are equal $\begin{aligned} & \Rightarrow{ }^{34} c_{r-6}={ }^{34} c_{2 r-2} \\ & \Rightarrow r-6+2 r-2=34 \ldots\left(\text { if }{ }^{n} c_{x}={ }^{\mathrm{n}} c_{y} \text { then } \mathrm{x}+\mathrm{y}=\mathrm{n} \text { or } \mathrm{x}=\mathrm{y}\right. \text {) } \\ & \text { (Or) } \mathrm{r}-6=2 \mathrm{r}-2 \\ & \Rightarrow 3 r=42 \text { or } \mathrm{r}-4 \text { but ' } \mathrm{r} \text { ' cannot be negative(-) } \\ & \Rightarrow r=14 \text { ans. } \end{aligned}$
Q.3)	Find the term independent of x in the expansion of $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{6}$?
mcqs	$\begin{array}{llll}\text { a) } \frac{-9}{1} & \text { b) } \frac{5}{12} & \text { c) } 10 & \text { d) } \frac{2}{8}\end{array}$
Sol.3)	General term is given by $T_{r+1}=(-1)^{r} \cdot{ }^{6} c_{r} \frac{(3)^{6-2 r}}{2^{6-r}} \cdot x^{12-3 r}$ For independent term of x i.e. x^{0}, put $12-3 r=0$ $\begin{aligned} & \Rightarrow \mathrm{r}=4 \\ & \therefore T_{5}=(-1)^{4} \cdot{ }^{6} c_{4} \frac{(3)^{6-8}}{2^{2}} \cdot x^{0} \\ & ={ }^{6} c_{2} \frac{(3)^{-2}}{2^{2}} \ldots \ldots \ldots \ldots . .\left(6 c_{4}=6 c_{2}\right) \end{aligned}$

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday on

	$\begin{aligned} & =\frac{6 \times 5}{2} \times \frac{1}{9 \times 4}=\frac{5}{12} \\ & \therefore 5^{\text {th }} \text { term is the independent term of } \mathrm{x} \text { and is given by } \frac{5}{12} \text { ans. } \end{aligned}$
Q.4)	Find the value of ' a ' so that the term independent of ' x ' in $\left(\sqrt{x}+\frac{a}{x^{2}}\right)^{10}$ is 405?
Mcqs	a) $a^{2}=\frac{40 \times 9}{8 \times 11}$ b) $a^{2}=\frac{-405 \times 2}{9 \times 10}$ c) $a^{2}=\frac{405 \times 2}{9 \times 10}$ d) $a^{2}=\frac{205 \times 2}{3 \times 6}$
Sol.4)	Given expansion: $\left(x^{1 / 2}+\frac{a}{x^{2}}\right)^{10}$ Independent term of $x=405$ To find ' a ' General term: $T_{r+1}={ }^{10} c_{r}\left(x^{1 / 2}\right)^{10-r} \cdot \frac{a^{r}}{x^{2 r}}$ $\begin{aligned} & \Rightarrow T_{r+1}={ }^{10} c_{r}(x)^{\frac{10-r}{2}-2 r} \cdot \frac{a^{r}}{x^{2 r}} \\ & \Rightarrow T_{r+1}={ }^{10} c_{r}(x)^{\frac{10-r}{2}-2 r} \cdot a^{r} \\ & \Rightarrow T_{r+1}={ }^{10} c_{r}(x)^{\frac{10-5 r}{2}} \cdot a^{r} \end{aligned}$ Now, for independent term of x i.e. x^{0}, Put $\frac{10-5 r}{2}=0$ $\begin{aligned} & \Rightarrow \mathrm{r}=2 \\ & \therefore T_{3}={ }^{10} c_{2}(x)^{0} \cdot a^{2} \\ & T_{3}={ }^{10} c_{2} a^{2} \end{aligned}$ Also independent term of $x=405$. \qquad (given) $\begin{aligned} & \Rightarrow{ }^{10} c_{2} a^{2}=405 \\ & \Rightarrow \frac{10 \times 9}{2} a^{2}=405 \\ & \Rightarrow a^{2}=\frac{405 \times 2}{9 \times 10} \text { ans. } \end{aligned}$
Q.5)	Find the middle terms in the expansion of $\left(3 x-\frac{x^{3}}{6}\right)^{7}$?
Mcqs	e) $42 x^{13}$ and 35 f) $\frac{-105}{8} x^{13}$ and $\frac{35}{48} x^{15}$ g) $\frac{25}{72} x^{13}$ and $\frac{30}{48}$ h) $\frac{-10}{1} x^{1}$ and $\frac{35}{8} x^{5}$
Sol.5)	Given expansion: $\left(3 x-\frac{x^{3}}{6}\right)^{7}$ To find 'middle term' Since, power is odd, \therefore there are two middle terms $=\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ and $\left(\frac{\mathrm{n}+3}{2}\right)^{\text {th }}$ i.e. $\left(\frac{7+1}{2}\right)^{\text {th }}$ and $\left(\frac{7+3}{2}\right)^{t h}$ $\Rightarrow 4^{\text {th }}$ and $5^{\text {th }}$ terms General term: $T_{r+1}=(-1)^{r}{ }^{7} c_{r}(3 x)^{7-r}\left(\frac{x^{3}}{6}\right)^{2}$ $\begin{aligned} & =(-1)^{r}{ }^{7} c_{r}(3)^{7-r} \cdot x^{7-r} \cdot \frac{x^{3 r}}{6^{r}} \\ & =T_{r+1}=(-1)^{r}{ }^{7} c_{r} \frac{(3)^{7-r}}{6^{r}} x^{7+2 r} \end{aligned}$ For T_{4}, put $r=3$ $\begin{aligned} & =\mathrm{T}_{3}=(-1)^{r} c_{3} \frac{(3)^{4}}{6^{3}} x^{7+6} \\ & =\frac{-7 \times 6 \times 5}{6} \times \frac{81}{216} x^{13} \\ & =\mathrm{T}_{4}=\frac{-105}{8} x^{13} \end{aligned}$ For T_{5}, put $\mathrm{r}=4$ $\therefore T_{5}=(-1)^{r}{ }^{7} c_{4} \frac{(3)^{3}}{6^{4}} x^{7+8}$

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday on

	$=T_{5}=\frac{35}{48} x^{15}$ \therefore the middle terms are $\frac{-105}{8} x^{13}$ and $\frac{35}{48} x^{15}$ ans.
Q.6)	Show that the middle term in the expansion of $(1+x)^{2 n}$ is $\frac{1.3 .5 \ldots \ldots \ldots .(2 n-1) \cdot 2^{n} \cdot x^{n}}{n!}$?
Mcqs	a) False b) True c) Not proved d) Negative
Sol.6)	Given expansion $(1+x)^{2 n}$ Since, power $(2 n)$ is even, only 1 middle term $=\left(\frac{2 n}{2}+1\right)^{t h}=(n+1)^{t h}$ terms General term: $T_{r+1}={ }^{2 n} c_{r} x^{r}$ For T_{n+1}, put $\mathrm{r}=\mathrm{n}$ $\begin{aligned} & =T_{n+1}={ }^{2 n} c_{n} x^{n} \\ & =\frac{(2 n)!}{n!n!} x^{n} \end{aligned}$ $=\frac{[1.3 .5 \ldots \ldots \ldots . .(2 n-1)]\left[2.4 .6 \ldots \ldots \ldots . .\left(2^{n}\right) x^{n}\right]}{n!n!}$ $=\frac{[1.3 .5 \ldots \ldots \ldots . .(2 n-1)] \cdot 2^{n}\left(1.2 .3 \ldots \ldots \ldots x^{n}\right.}{n!n!}$ $=\frac{1 \cdot 3.5 . \ldots \ldots \ldots . .(2 n-1) \cdot 2^{n} \cdot n!\cdot x^{n}}{n!n!}$ $=T_{n+1}=\frac{\stackrel{n!5 . \ldots \ldots \ldots . .(2 n-1) \cdot 2^{n} \cdot x^{n}}{1.3} \text {. }}{n!}$.
Q.7)	Show that the coefficient of the middle terms in the expansion of $(1+x)^{2 n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1+x)^{2 n-1}$? For mcqs..... is it true or false?
Mcqs	e) True f) False ${ }^{\text {a }}$ (g) Negative ${ }^{\text {a }}$
Sol.7)	$1^{\text {st }}$ expansion : $(1+x)^{2 n}$ Since, power ($2 n$) is even, only 1 middle term $=\left(\frac{2 n}{2}+1\right)^{t h}=(n+1)^{t h} \text { term }$ General term: $T_{r+1}={ }^{2 n} c_{r} x^{r}$ For T_{n+1}, put $\mathrm{r}=\mathrm{n}$ $=T_{n+1}={ }^{2 n} c_{n} x^{n} \ldots\left(\text { (coefficient }={ }^{2 n} c_{n}\right)$ $2^{\text {nd }}$ expansion: $(1+x)^{2 n-1}$ Since, power ($2 n-1$) is odd, only 2 middle terms $\begin{aligned} & =\left(\frac{2 n-1+1}{2}\right)^{\text {th }}=\left(\frac{2 n-1+3}{2}\right)^{\text {th }} \text { term } \\ & =n^{\text {th }} \text { and }(n+1)^{\text {th }} \text { terms } \end{aligned}$ General term: $T_{r+1}={ }^{2 n-1} c_{r} x^{r}$ For T_{n}, put $\mathrm{r}=\mathrm{n}-1$ $\therefore T_{n}={ }^{2 n-1} c_{n-1} x^{n-1}$ Coefficient $={ }^{2 n-1} c_{n-1}$ For T_{n+1}, put $\mathrm{r}=\mathrm{n}$ $\therefore T_{n+1}={ }^{2 n-1} c_{n} x^{n}$ Coefficient $={ }^{2 n-1} c_{n}$ Now, we have to prove that ${ }^{2 n} c_{n}={ }^{2 n-1} c_{n-1}+{ }^{2 n-1} c_{n}$ R.H.S $={ }^{2 n-1} c_{n-1}+{ }^{2 n-1} c_{n}$ $\begin{aligned} & \left.={ }^{2 n-1+1} c_{n} \ldots{ }^{n} c_{r}+{ }^{n} c_{r-1}={ }^{n+1} c_{r}\right) \\ & ={ }^{2 n} c_{n}=\text { L.H.S (proved) } \end{aligned}$
Q.8)	Prove that the coefficient of x^{n} is the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$?

StudiesToday on

	For mcqs..... is it true or false?
Mcqs	i) True j) False k) Negative l) Positive
Sol.8)	$1^{\text {st }} \text { expansion: }(1+x)^{2 n}$ General term: $T_{r+1}={ }^{2 \mathrm{n}} c_{r} x^{r}$ For x^{n}, put $\mathrm{r}=\mathrm{n}$ $=T_{n+1}={ }^{2 n} c_{n} x^{n}$ Coefficient of $x^{n}={ }^{2 n} c_{n}$ $2^{\text {nd }}$ expansion: $(1+x)^{2 n-1}$ General term: $T_{r+1}={ }^{2 n-1} c_{r} x^{r}$ For x^{n}, put $\mathrm{r}=\mathrm{n}$ $=T_{n+1}={ }^{2 n-1} c_{n} x^{n}$ Coefficient of $x^{n}={ }^{2 n-1} c_{n}$ Now, we have to prove that $\begin{align*} & ={ }^{2 n} c_{n}=2\left(2^{2 n-1} c_{n}\right) \\ & \text { R.H.S }=2 .^{2 n-1} c_{n} \\ & =\frac{2(2 n-1)!}{n!(n-1)!} . \ldots \tag{1} \end{align*}$ $\text { L.H.S }={ }^{2 n} c_{n}$ $=\frac{(2 n)!}{n!n!}=\frac{(2 n)(2 n-1)!}{n!n(n-1)!}$ $\begin{equation*} =\frac{2(2 n-1)!}{n!(n-1)!} . \tag{2} \end{equation*}$ From (1) \& (2) , R.H.S = L.H.S (proved)
Q.9)	The sum of the coefficients of the $1^{\text {st }}$ three terms in the expansion of $\left(x-\frac{3}{x^{2}}\right)^{m}$ is 559 . Find the term containing x^{3} in the expansion?
mcqs	a) $2582 x^{3}$ b) $-5940 x^{3}$ c) $5900 \quad$ d) $5940 x^{3}$
Sol.9)	Given expansion: $\left(x-\frac{3}{x^{2}}\right)^{m}$ To find ' m ' General term: $T_{r+1}=(-1)^{r}{ }^{m} c_{r}(x)^{m-r}\left(\frac{3}{x^{2}}\right)^{2}$ $\begin{aligned} & =(-1)^{r{ }^{m}} c_{r}(x)^{m-r} \frac{3^{r}}{x^{2 r}} \\ & =T_{r+1}=(-1)^{r{ }^{m}} c_{r}(3)^{r}(x)^{m-3 r} \end{aligned}$ For T_{1}, put $r=0$ $\begin{aligned} & =T_{1}=(-1)^{0}{ }^{m} c_{0}(3)^{0}(x)^{m} \\ & =T_{1}=x^{m} \end{aligned}$ \therefore coefficient of $T_{1}=1$ For T_{2}, put r = 1 $\begin{aligned} & =T_{2}=(-1)^{1 \mathrm{~m}^{m}} c_{1} 3^{1} x^{m-3} \\ & =T_{2}=-(m)(3) x^{m-3} \end{aligned}$ $\therefore \text { coefficient of } T_{2}=-3 \mathrm{~m}$ For T_{3} put $\mathrm{r}=2$ $\begin{aligned} & =T_{3}=(-1)^{2}{ }^{m} c_{2} 3^{2} x^{m-6} \\ & =T_{3}=m c_{2} \cdot 9 x^{m-6} \\ & =T_{3}=\frac{9 m(m-1)}{2} x^{m-6} \\ & \therefore \text { coefficient of } T_{3}=\frac{9 m(m-1)}{2} \end{aligned}$ We are given that, $\begin{aligned} & 1-3 m+\frac{9 m(m-1)}{2}=559 \\ & \Rightarrow 2-6 m+9 m^{2}-9 m=1118 \\ & \Rightarrow 9 m^{2}-15 m-116=0 \\ & \Rightarrow 3 m^{2}-5 m-372=0 \text { (divide by } 3 \text {) } \end{aligned}$

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday on

	$a=3, b=-5, c=-375$ By quadratic formula, $\begin{aligned} & m=\frac{5 \pm \sqrt{25+(4)(3)(372)}}{2 \times 3} \\ & m=\frac{5 \pm \sqrt{4489}}{6} \\ & m=\frac{5 \pm 67}{6} \\ & m=\frac{5+67}{6}, m=\frac{5-67}{6} \\ & m=\frac{72}{6}, m=\frac{-62}{6} \end{aligned}$ $m=-12 \text { (since power (} \mathrm{m} \text {) cannot -ve) }$ \therefore general term becomes $=T_{r+\frac{1}{2}}=(-1)^{r 12} c_{r}(3)^{r}(x)^{12-3 r}$ For x^{3}, put $\mathrm{r}=3$ $\begin{aligned} & \therefore T_{4}=(-1)^{312} c_{3}(3)^{3} x^{3} \\ & =\frac{-12 \times 11 \times 10}{6} \times 27 \times x^{3}=-5940 x^{3} \text { ans. } \end{aligned}$
Q.10)	The coefficients of three consecutive terms in the expansion of $(1+a)^{n}$ are in ratio $1: 7: 42$. Find the value of ' n '?
mcqs	a) 33 b) 26 c) 55 (d) 78
Sol.10)	Given expansion: $(1+a)^{n}$ General term: $T_{r+1}={ }^{n} c_{r} a^{r}$ Let the three consecutive terms are $(r-1)^{t h},(r)^{t h}$ and $(r+1)^{\text {th }}$ term For T_{r-1}, put r=r-2 $\therefore T_{r-1}={ }^{n} c_{r-2} a^{r-2}$ Coefficient of $T_{r-1}={ }^{n} c_{r-2}$ For T_{r}, put r=r-1 $\therefore T_{r}={ }^{n} c_{r-1} a^{r-1}$ Coefficient of $T_{r}={ }^{\mathrm{n}} c_{r-1}$ $T_{r+1}={ }^{\mathrm{n}} c_{r} a^{r}$ Coefficient of $T_{r+1}={ }^{n} c_{r}$ We are given that, ${ }^{\mathrm{n}} c_{r-2}:{ }^{\mathrm{n}} c_{r-1}:{ }^{\mathrm{n}} c_{r}=1: 7: 42$ consider, $\frac{\mathrm{n}_{c_{r-2}}}{\mathrm{n}_{c_{r-1}}}=\frac{1}{7}$ $\begin{aligned} & \Rightarrow \frac{\frac{n!}{(r-2)!(n-r+2)!}}{\frac{n!}{(r-1)!(n-r+1)!}}=\frac{1}{7} \\ & \Rightarrow \frac{(r-1)!(n-r+1)!}{(r-2)!(n-r+2)!}=\frac{1}{7} \\ & \Rightarrow \frac{(r-1)}{(n-r+2)!}=\frac{1}{7} \\ & \Rightarrow 7 r-7=n-r+2 \\ & \Rightarrow 8 r-9=n \ldots \ldots(1) \end{aligned}$ Now, consider $\frac{\mathrm{n}_{c_{r-1}}}{\mathrm{n}_{c_{r}}}=\frac{7}{42}$ $\begin{aligned} & \Rightarrow \frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{n!}{(r)!n r)!}}=\frac{1}{6} \\ & \Rightarrow \frac{r!(n-r)!}{(r-1)!(n-r+1)!}=\frac{1}{6} \\ & \Rightarrow \frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!}=\frac{1}{6} \\ & \Rightarrow \frac{r}{n-r+1}=\frac{1}{6} \\ & \Rightarrow 6 r+\mathrm{n}-\mathrm{r}+1 \\ & \Rightarrow 7 r-1=\mathrm{n} . \ldots \ldots . .(2) \end{aligned}$

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	From (1) and (2), 8r-9 $=7 r-1$ $\Rightarrow r=8$, put in eq. (1) $\Rightarrow n=56-1=55$ ans.

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

