Downloaded from www.studiestoday.com

REDOX REACTIONS

ONE MARK QUESTIONS

- 1 What do you mean by oxidation number?
- 2 Name a compound each in which hydrogen exists in i) +1 ii) -1 oxidation states
- 3 Define Redox couple.
- 4 Find the oxidation number of the element underlined (each carries I mark)
 - b) K_2CrO_4 c) CH_4 d) SO_2Cl_2 f) NO_2 a) Na₃VO₄ g) BrF_3 h) Na_2S_4 O_6
 - i) <u>C</u>H₂Cl₂ j) <u>Cl</u>O₄

TWO MARKS QUESTIONS

- Name a compound each in which oxygen exists in 1
 - i) +1ii) -1 iii) +2
- iv) -2 oxidation states

- 2 Define
 - i) stock notation
 - i) Standard electrode potential
- 3 Explain the following by giving example
 - i) Displacement redox reaction.
 - ii) Disproportionation reactions
- Calculate the standard emf of the following cell at 298K using the standard electrode 4

potential. Al(s)
$$|A|^{3+}(aq) | Fe^{2+}(aq) | Fe(s)$$

Given
$$E_{Al}^{0.3+}/Al = -1.66 \text{ V}$$
 and $E_{Fe}^{0.2+}/Fe = -0.44 \text{ V}$.

And what will be the cell reaction?

- 5 What is salt bridge? What are its functions.
- 6 Write the cell reaction for the following Galvanic cells:
 - $\begin{array}{c|c} Mg(s) & Mg^{2^+}(aq) & Al^{3^+}(aq) & Al(s) \\ Zn(s) & Zn^{2^+}(aq) & Ag^+(aq) & Ag(s) \end{array}$
- 7 Balance the following equations: (each carries 2 marks)
 - i) $MnO_4^- + C_2H_2O_4 \rightarrow Mn^{2+} + CO_2$ [acid]
 - ii) $MnO_4^- + Br^- \rightarrow Mn^{2+} + Br_2$ [acid]
 - iii) $HNO_2 + I \rightarrow NO + I_2$ [acid]

Downloaded from www.studiestoday.com

THREE MARKS QUESTIONS

- 1 Identify the redox reactions and classify them.
 - a. $2Na + H_2 \rightarrow 2NaH$
 - b. $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$
 - c. $CaCO_3 \rightarrow CaO + CO_2$
 - d. 2HCHO + NaOH→HCOONa + CH₃OH
- 2 i) Predict whether the following redox reaction is feasible or not under standard conditions

$$Sn^{2+}(aq) + Cu(s) \rightarrow Sn(s) + Cu^{2+}(aq)$$

Given that $E^0_{Sn}^{2+}_{/Sn} = -0.136 \text{ V}$ and $E^0_{Cu}^{2+}_{/Cu} = 0.34 \text{ V}$

- ii) Differentiate between Activity series and Electrochemical series
- 3 Balance the following equations: (each carries 3 marks)

a.
$$HNO_2 + I \rightarrow NO + I_2$$
 [acid]

b.
$$I_2 + NO_3^- + H^+ \rightarrow NO_2 + IO_3^-$$
 [acid]

c. Al
$$+ NO_3 \rightarrow Al(OH)_4 + NH_3$$
 [basic]

d.
$$CrO_3^- + H_2O_2 \rightarrow CrO_4^{2-} + H_2O$$
 [basic]

e.
$$Fe(OH)_2 + H_2O_2 \rightarrow Fe(OH)_3 + H_2O$$
 [basic]

f.
$$\Gamma + IO_3^- \rightarrow I_2 + H_2O$$
 [acid]

VALUE BASED QUESTION (FOUR MARKS)

- A solution of an electrolyte can be stored in a particular vessel only in case there is no chemical reaction taking place with the material of the vessel. The teacher asked a student Sachin, is it possible to store silver nitrate in copper vessel. Sachinanswered; it is not possible to store silver nitrate in copper vessel & gave his explanation.
 - i) What explanation did Sachin gave to his teacher.
 - ii) What is oxidation & reduction according to electronic concept?
 - iii) What are the values displayed by Sachin?
