CHAPTER 4

SIMILAR TRIANGLES

KEY POINTS

1. Similar Triangles : Two triangles are said to be similar if their corresponding angles are equal and their corresponding sides are proportional.
2. Criteria for Similarity :
in $\triangle A B C$ and $\triangle D E F$
(i) AAA Similarity : $\triangle A B C \sim \triangle D E F$ when $\angle A=\angle D, \angle B=\angle E$ and $\angle C=\angle F$
(ii) SAS Similarity :

$$
\triangle A B C \sim \triangle D E F \text { when } \frac{A B}{D E}=\frac{A C}{D F} \text { and } \angle B=\angle E
$$

(iii) SSS Similarity : $\triangle A B C \sim \triangle D E F, \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$.
3. The proof of the following theorems can be asked in the examination :
(i) Basic Proportionality Theorem : If a line is drawn parallel to one side of a triangle to intersect the other sides in distinct points, the other two sides are divided in the same ratio.
(ii) The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
(iii) Pythagoras Theorem : In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Downloaded from www.studiestoday.com

(iv) Converse of Pythagoras Theorem : In a triangle, if the square of one side is equal to the sum of the squares of the other two sides then the angle opposite to the first side is a right angle.

MULTIPLE CHOICE QUESTIONS

1. $\triangle A B C \sim \triangle D E F$. If $D E=2 A B$ and $B C=3 \mathrm{~cm}$ then $E F$ is equal to \qquad -.
(a) 1.5 cm
(b) 3 cm
(c) 6 cm
(d) 9 cm
2. In $\triangle D E W, A B \| E W$ if $A D=4 \mathrm{~cm}, D E=12 \mathrm{~cm}$ and $D W=24 \mathrm{~cm}$ then the value of $D B=$ \qquad
(a) 4 cm
(b) 8 cm
(c) 12 cm
(d) 16 cm
3.

In the figure the value of $c d=$ \qquad
(a) $a e$
(b) $a f$
(c) $\quad b f$
(d) $b e$
4. If in $\triangle A B C, A B=6 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $C A=6 \sqrt{3} \mathrm{~cm}$ then the measure of $\angle A$ is
(a) 30°
(b) 45°
(c) 60°
(d) 90°
5. The area of two isosceles triangles are in the ratio $16: 25$. The ratio of their corresponding heights is-
(a) $5: 4$
(b) $3: 2$
(c) $4: 5$
(d) $5: 7$
6. In the figure, $\triangle A B C$ is similar to \qquad

(a) $\triangle B D C$
(b) $\triangle D B C$
(c) $\triangle C D B$
(d) $\triangle C B D$
7. $\triangle A M B \sim \triangle C M D$. Also $2 \operatorname{ar}(\triangle A M B)=\operatorname{ar}(\triangle C M D)$ the length of $M D$ is
(a) $\sqrt{2} M B$
(b) $\sqrt{2} M D$
(c) $\frac{\sqrt{2}}{M B}$
(d) $\frac{\sqrt{2}}{M D}$
8. In fig. length of $A E$ is
(a) 10 cm
(b) 9 cm
(c) $5 \sqrt{5} \mathrm{~cm}$
(d) $\sqrt{5} \mathrm{~cm}$

9. In $\triangle A B C, D$ and E are points on side $A B$ and $A C$ respectively such that $D E \| B C$ and $A D: D B=3: 1$. If $E A=3.3 \mathrm{~cm}$ then $A C=$
(a) 1.1 cm
(b) 4.4 cm
(c) 4 cm
(d) 5.5 cm
10. $A B C$ and $B D E$ are two equilateral triangles such that D is the midpoint of $B C$. Ratio of the areas of triangles $A B C$ and $B D E$ is-
(a) $2: 1$
(b) $1: 2$
(c) $4: 1$
(d) $1: 4$
11. In $\triangle A B C, D E \| B C$. In the figure the value of x is \qquad

(a) 1
(b) $\quad-1$
(c) 3
(d) -3
12. In $\triangle A B C, \angle B=90^{\circ}, B E$ is the perpendicular bisector of $A C$ then $\frac{\operatorname{ar}(\triangle B E C)}{\operatorname{ar}(\triangle A B C)}=$ \qquad
(a) $\frac{1}{2}$
(b) $\frac{2}{1}$
(c) $\frac{4}{1}$
(d) $\frac{1}{4}$
13. The altitude of an equilateral triangle, having the length of its side 12 cmis
(a) 12 cm
(b) $6 \sqrt{2} \mathrm{~cm}$
(c) 6 cm
(d) $6 \sqrt{3} \mathrm{~cm}$
14. The straight line distance between A and B is

(a) $3 \sqrt{5}$
(b) $5 \sqrt{3}$
(c) 5
(d) $5 \sqrt{2}$
15. If in an isosceles right-angled triangle the length of the hypotenuse is 10 cm then the perimeter of the triangle is
(a) $5 \sqrt{2} \mathrm{~cm}$
(b) $2 \sqrt{5} \mathrm{~cm}$
(c) $10(\sqrt{2}+1) \mathrm{cm}$
(d) $10(\sqrt{2}-1) \mathrm{cm}$

SHORT ANSWER TYPE QUESTIONS

16. In figure $\triangle A B C \sim \triangle A P Q$. If $B C=8 \mathrm{~cm}, P Q=4 \mathrm{~cm} B A=6.5 \mathrm{~cm}, A P=2.8$ cm , find $C A$ and $A Q$.

17. In the adjoining figure find $A E$ if $D E \| B C$

18. In the figure name the similar triangle.

19. An isosecles triangle $A B C$ is similar to triangle $P Q R$. $A C=A B=4 \mathrm{~cm}$, $R Q=10 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. What is the length of $P R$? Which type of triangle is $\triangle P Q R$?
20. In the figure $\triangle A B C \sim \triangle P Q R$. What is the value of x ?

21. In $\triangle P Q R, D E \| Q R$ and $D E=\frac{1}{4} Q R$. Find $\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle P D E)}$.

22. In triangles $A B C$ and $P Q R$ if $\angle B=\angle Q$ and $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{1}{2}$ then what is the value of $\frac{P R}{Q R} ?$
23. The measurement of three sides of a triangle are $a, \sqrt{10} a, 3 a$. What is the measurement of the angle opposite to the longest side?
24. In the adjoining figure $D E \| B C$. What is the value of $D E$.

LONG ANSWER TYPE QUESTIONS

25. In the figure find $S R$ if $\angle Q P R=\angle P S R . P R=6 \mathrm{~cm}$ and $Q R=9 \mathrm{~cm}$

26. In $\triangle P Q R, R S \perp P Q, \angle Q R S=\angle P, P S=5 \mathrm{~cm}, S R=8 \mathrm{~cm}$. Find $P Q$.
27. Two similar triangles $A B C$ and $P B C$ are made on opposite sides of the same base $B C$. Prove that $A B=B P$.
28. In a quadrilateral $A B C D, \angle \mathrm{~B}=90^{\circ}, \mathrm{AD}^{2}=A B^{2}+B C^{2}+C D^{2}$. Prove that $\angle A C D=90^{\circ}$.

29. In figure $D E \| B C, D E=3 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $\operatorname{ar}(\triangle A D E)=30 \mathrm{~cm}^{2}$. Find ar (trap. BCED).

30. Amit is standing at a point on the ground 8 m away from a house. A mobile network tower is fixed on the roof of the house. If the top and bottom of the tower are 17 m and 10 m away from the point. Find the heights of the tower and house.
31. In a right angled triangle $A B C$, right angle at $B, \frac{B C}{A B}=\sqrt{3}$. Find $\frac{A B}{A C}$.
32. In a right angled triangle $P R O, P R$ is the hypotenuse and the other two sides are of length 6 cm and 8 cm . Q is a point outside the triangle such that $P Q=24 \mathrm{~cm} R Q=26 \mathrm{~cm}$. What is the measure of $\angle Q P R$?
33. In the figure $\triangle A B C$ is isosceles with $A B=A C, P$ is the mid point of $B C$. If $P M \perp A B$ and $P N \perp A C$. Prove that $M P=N P$.

34. $P Q R S$ is a trapezium. $S Q$ is a diagonal. E and F are two points on parallel sides $P Q$ and $R S$ respectively intersecting $S Q$ at G. Prove that $S G \times Q E=Q G \times S F$.
35. Two poles of height a metres and b metres are apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{a b}{a+b} \mathrm{mts}$.

36. Show that the areas of two similar triangles are in the ratio of the squares (of the corresponding angle bisector segments).
37. In a rhombus, prove that four times the square of any sides is equal to the sum of squares of its diagonals.
38. $A B C D$ is a trapezium with $A E \| D C$. If $A B D$ is similar to $\triangle B E C$. Prove that $A D=B C$.
39. In a triangle, if the square of one side is equal to the sum of the squares on the other two sides, then prove that the angle opposite to the first side is a right triangle.
40. Prove that in a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.
41. $A B C D$ is a rectangle in which length is double of its breadth. Two equilateral triangles are drawn one each on length and breadth of rectangle. Find the ratio of their areas.
42. Amar and Ashok are two friends standing at a corner of a rectangular garden. They wanted to drink water. Amar goes due north at a speed of $50 \mathrm{~m} / \mathrm{min}$ and Ashok due west at a speed of $60 \mathrm{~m} / \mathrm{min}$. They travel for 5
minutes. Amar reaches the tap and drink water. How far (minimum distance) is Ashok from the tap now.

43. If two triangles are equiangular, prove that the ratio of the corresponding sides is same as the ratio of the corresponding altitudes.
44. In figure, if $A D \perp B C$ and $\frac{B D}{D A}=\frac{D A}{D C}$, prove that $\triangle A B C$ is a right triangle.

45. In figure $D E \| B C$ and $A D: D B=5: 4$. Find $\frac{\text { ar } \triangle D E F}{\text { ar } \triangle C F B}$

ANSWERS

1.	c	2.	b
3.	a	4.	d
5.	c	6.	d
7.	a	8.	c
9.	b	10.	c
11.	d	12.	d
13.	d	14.	a
15.	c	16.	$A C=5.6 \mathrm{~cm}, A Q=3.25 \mathrm{~cm}$
17.	1.5 cm	18.	$\triangle A P Q \sim \triangle A B C$
19.	$\frac{20}{3} \mathrm{~cm}$	20.	4.8 cm
21.	$16: 1$	22.	$\frac{1}{2}$
23.	90°	24.	2.5 cm
25.	4 cm	26.	17.8 cm
29.	$240 \mathrm{~cm}^{2}$	30.	$9 \mathrm{~m}, 6 \mathrm{~m}$
31.	$\frac{1}{2}$	32.	90°
41.	$4: 1$	42.	$50 \sqrt{61} \mathrm{~m}$
43.	$5 \sqrt{10} \mathrm{~cm}$	45.	$\frac{\operatorname{ar} \triangle D E F}{\operatorname{ar} \triangle C F B}=\frac{25}{81}$

