Downloaded from www.studiestoday.com QUESTIONS OF HEIGHTS AND DISTANCES

CLASS X

LEVEL-1

Q1. If the observer is at point B and the object is at point C. What is the angle formed? (Elevation /depression)

Solution. As the observer is at B and the object is at C. So the observer has to look downwards. So the angle formed is the angle of depression.

Q2. In the given fig: find BC if $\mathrm{AC}=6 \mathrm{~cm}$ and $\angle \mathrm{A}=30^{\circ}$.

Solution.In the given fig:
$<\mathrm{A}=30^{0}$
or $\sin \mathrm{A}=\frac{B C}{A C}$
or $\sin 30^{\circ}=\frac{B C}{6}$
or $\frac{1}{2}=\frac{B C}{6}$
or $\mathrm{BC}=\frac{6}{2}=3 \mathrm{~cm}$
Q3. A tower stands vertically on the ground. From a point on the ground which is 20 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.

Downloaded from www.studiestoday.com

Solution.

Let us assume the AB be the tower and C is a point 20 m away from the ground.
Angle of elevation of the top of the tower is 60°
In rt. \triangle CBA,

AB $=\tan 60^{\circ}$
CB
$\underline{\mathrm{AB}}=\sqrt{ } 3$
20
$A B=20 \sqrt{ } 3 \mathrm{~m}$

Hence, the height of the tower is $20 \sqrt{ } 3 \mathrm{~m}$.

Q4. An observer 1.5 m tall is 28.5 m away from a chimney. The angle of elevation of the top of the Chimney from his eye is 45°. What is height of the chimney?

Solution.

28.5 m

C
Let the height of the chimney $=x+1.5$
In $\triangle \mathrm{ADB}$
$\operatorname{Tan} 45^{\circ}=\mathrm{x} / \mathrm{DB}$
$1=x / 28.5\{\mathrm{EC}=\mathrm{DB}\}$
$\mathrm{X}=28.5 \mathrm{~cm}$
Therefore height of the chimney $=28.5+1.5$

$$
=30 \mathrm{~m}(\mathrm{Ans})
$$

Downloaded from www.studiestoday.com

LEVEL - 2

Q1. From a point P on a level ground, the angle of elevation of the top tower is 30°. If the tower is 100 m high, find the distance of point P from the foot of the tower.

Solution.

Let $A B$ be the tower.

Then, $\angle \mathrm{APB}=30^{\circ}$ and $\mathrm{AB}=100 \mathrm{~m}$.
$\frac{\mathrm{AB}}{\mathrm{AP}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
\Rightarrow
$A=(A B x \sqrt{3}) m$
P
$=100 \sqrt{3} \mathrm{~m}$
$=(100 \times 1.73) \mathrm{m}$
$=173 \mathrm{~m}$
Q2. Find the angle of elevation of the sun, when the length of the shadow of a tree $\sqrt{3}$ times the height of the tree.
Solution.
Let $A B$ be the tree and $A C$ be its shadow.

Downloaded from www.studiestoday.com

Let $\angle \mathrm{ACB}={ }^{-1}$.
As, $A C=\sqrt{3} A B$

A
Then $\begin{aligned} \frac{C}{A}=\quad \sqrt{3} & \Rightarrow \cot \theta \\ & =\sqrt{3}\end{aligned}$
B
$\therefore \theta=30^{\circ}$.
Q3. A ladder 10 m long just reaches the top of a wall and makes an angle of 60° with the wall.Find the distance of the foot of the ladder from the wall $(\sqrt{3}=1.73)$

Solution.

Let BA be the ladder and AC be the wall as shown above.

Then the distance of the foot of the ladder from the wall $=\mathrm{BC}$
Given that $\mathrm{BA}=10 \mathrm{~m}, \angle \mathrm{BAC}=60^{\circ}$
$\sin 60^{\circ}=\mathrm{BC} / \mathrm{BA} \quad \sqrt{3} / 2=\mathrm{BC} / 10 \quad \mathrm{BC}=10 \times \sqrt{3} / 2=5 \times 1.73=8.65 \mathrm{~m}$
Q4. The angle of elevation of a ladder leaning against a wall is 60° and the foot of the ladder is 4.6 n away from the wall. Find the length of the ladder.

Solution.

Let $A B$ be the wall and $B C$ be the ladder.

Downloaded from www.studiestoday.com

Then, $\angle \mathrm{ACB}=60^{\circ}$ and $\mathrm{AC}=4.6 \mathrm{~m}$.
$\frac{A C}{B C}=\cos 60^{\circ}=\frac{1}{2}$

Or BC=2(AC)
Or $B C=(2 \times 4.6) \mathrm{m}$
Or $\mathrm{BC}=9.2 \mathrm{~m}$

LEVEL-3

Q1. Two ships are sailing in the sea on the two sides of a lighthouse. The angle of elevation of the top of the lighthouse as observed from the ships is 30° and 45° respectively. If the lighthouse is 100 m high, find the distance between the two ships.

Solution.

Let AB be the lighthouse and C and D be the positions of the ships.

Then, $\mathrm{AB}=100 \mathrm{~m}, \angle \mathrm{ACB}=30^{\circ}$ and $\angle \mathrm{ADB}=45^{\circ}$.

A
$\frac{\mathrm{B}}{\mathrm{A}}=\tan 30^{\circ}=\frac{1}{\sqrt{5}} \quad \Rightarrow \quad \begin{gathered}\mathrm{AC}=\mathrm{AB} \times \sqrt{ } 3= \\ 100 \sqrt{3}\end{gathered}$
C
A
$\frac{\mathrm{B}}{\mathrm{A}}=\tan 45^{\circ}=1 \quad \Rightarrow \quad \mathrm{AD}=\mathrm{AB}=100$
D

Downloaded from www.studiestoday.com

$\therefore C D=(A C+\quad=(100 \sqrt{3}+100)$ AD)
m
$=100(\sqrt{3}+1)$
$=(100 \times 2.73) \mathrm{m}$
$=273 \mathrm{~m}$.

Q2. On the same side of a tower, two objects are located. Observed from the top of the tower, their angles of depression are 45° and 60°. If the height of the tower is 600 m , find the distance between the objects.

Solution.

Let DC be the tower and A and B be the objects as shown above.
Given that $\mathrm{DC}=600 \mathrm{~m}, \angle \mathrm{DAC}=45^{\circ}, \angle \mathrm{DBC}=60^{\circ}$
$\tan 60^{\circ}=\mathrm{DC} / \mathrm{BC} \quad \sqrt{3}=600 / \mathrm{BC} \quad \mathrm{BC}=600 / \sqrt{3}-----(1)$
$\tan 45^{\circ}=\mathrm{DC} / \mathrm{AC} \quad 1=600 / \mathrm{AC} \quad \mathrm{AC}=600-----(2)$
Distance between the objects $=\mathrm{AB}=(\mathrm{AC}-\mathrm{BC})=600-600 \sqrt{3}=254 \mathrm{~m}$ (approx..)
Q3. The angle of elevation of the top of a lighthouse 60 m high, from two points on the ground on its opposite sides are 45° and 60°. What is the distance between these two points?

Solution.

Downloaded from www.studiestoday.com

Let BD be the lighthouse and A and C be the two points on ground.
Then, BD, the height of the lighthouse $=60 \mathrm{~m}$

$$
\angle \mathrm{BAD}=45^{\circ}, \angle \mathrm{BCD}=60^{\circ}
$$

$$
\begin{aligned}
& \tan 45^{\circ}=\mathrm{BD} / \mathrm{BA} \Rightarrow 1=60 / \mathrm{BA} \Rightarrow \mathrm{BA}=60 \mathrm{~m}-----(1) \\
& \tan 60^{\circ}=\mathrm{BD} / \mathrm{BC} \Rightarrow \sqrt{3}=60 / \mathrm{BC} \\
& \Rightarrow \mathrm{BC}=60 / \sqrt{3}=20 \times 1.73=34.6 \mathrm{~m}-----(2)
\end{aligned}
$$

Distance between the two points A and $\mathrm{C}=\mathrm{AC}=\mathrm{BA}+\mathrm{BC}$
$=60+34.6[\because$ Substituted the value of BA and BC from (1) and (2) $]$
$=94.6 \mathrm{~m}$

Q4. 10. A vertical tower stands on ground and is surmounted by a vertical flagpole of height 18 m . At a point on the ground, the angle of elevation of the bottom and the top of the flagpole are 30° and 60° respectively. What is the height of the tower?

Solution.

Downloaded from www.studiestoday.com

Let DC be the vertical tower and AD be the vertical flagpole. Let B be the point of observation.
Given that $\mathrm{AD}=18 \mathrm{~m}, \angle \mathrm{ABC}=60^{\circ}, \angle \mathrm{DBC}=30^{\circ}$

Let DC be h .
$\tan 30^{\circ}=\mathrm{DC} / \mathrm{BC} \quad 1 / \sqrt{3}=\mathrm{h} / \mathrm{BC} \quad \mathrm{h}=\mathrm{BC} / \sqrt{3}-----(1)$
$\tan 60^{\circ}=\mathrm{AC} / \mathrm{BC} \quad \sqrt{3}=(18+\mathrm{h}) / \mathrm{BC} \quad 18+\mathrm{h}=\mathrm{BC} \times \sqrt{3}-----(2)$
from (1) \& (2) we get
the height of the tower ' h ' $=9 \mathrm{~m}$

LEVEL-4

1. Q1. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m .

Solution.

Downloaded from www.studiestoday.com

$\therefore \mathrm{BC}=4 \mathrm{~m}, \mathrm{BD}=9 \mathrm{~m}$
$\angle \mathrm{ABC}=\angle \mathrm{ABD}=90^{\circ}$

Let $\angle \mathrm{ACB}=\theta$.
$\therefore \angle \mathrm{ADB}=\left(90^{\circ}-\theta\right)$

In right triangle ABC , we have
$\tan \theta=\frac{A B}{B C}$
$\Rightarrow \tan \theta=\frac{\hbar}{4}$

In right triangle $A B D$, we have $\tan \left(90^{\circ}-\theta\right)=\frac{A B}{B D}$
$\Rightarrow \cot \theta=\frac{h}{9}$

From equations (1) and (2), we get
$\tan \theta \times \cot \theta=\frac{\hbar}{4} \times \frac{\hbar}{9}$
$\Rightarrow 1=\frac{h^{2}}{36}$
$\Rightarrow 36=h^{2}$
$\Rightarrow \mathrm{h}=6$

Hence, the height of the tower is 6 m .

Q2. The angles of elevation and depression, of an aeroplane and its image in water are 30° and 45°, respectively, from the top of a tree of height 5 m . Find the height at which the aeroplane is flying from the ground. Solution.

Let AB be the height of the tree.
$\Rightarrow A B=5 \mathrm{~m}$

Let C and F be the actual position of the aeroplane and its image in the water, respectively.
From the figure: Height at which aeroplane is flying from ground $=C E$
$\Rightarrow \mathrm{CE}=\mathrm{h}$

Distance of the aeroplane's image in water from ground $=\mathrm{EF}$
$\Rightarrow \mathrm{EF}=\mathrm{h}$

Given $\angle \mathrm{CAD}=30^{\circ}$ and $\angle \mathrm{DAF}=45^{\circ}$

As per the problem, ADEB is a rectangle.
$\Rightarrow \mathrm{AB}=\mathrm{DE}=5$

Let $\mathrm{AD}=\mathrm{BE}=\mathrm{x}$

In $\Delta \mathrm{DAF}$:

$$
=\frac{D F}{A D}
$$

$\tan 45^{\circ}$
$\Rightarrow 1=\frac{D E+E F}{A D}$
$\Rightarrow 1=\frac{5+h}{x}$
$\Rightarrow x=5+h$

In $\Delta \mathrm{CAD}$:
$\tan 30^{\circ}=\frac{C D}{A D}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{C E-D E}{A D}$

Downloaded from www.studiestoday.com

$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h-5}{x}$

$$
\begin{equation*}
\Rightarrow x=\sqrt{3}(h-5) \tag{2}
\end{equation*}
$$

Equating equations (1) and (2), we get
$5+h+\sqrt{3}(h-5)$
$\Rightarrow h=\frac{5(\sqrt{3}+1)}{(\sqrt{3}-1)}$

On rationalising the denominator, we get
$h=\frac{5(\sqrt{3}+1)}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}$
$=\frac{5(\sqrt{3}+1)^{2}}{3-1}$
$=\frac{5(3+1+2 \sqrt{3})}{2}$
$=\frac{5(4+2 \sqrt{3})}{2}$
$=5(2+\sqrt{3})$

Hence, the height of the aeroplane from the ground is $5(2+\sqrt{3}) \mathrm{m}$

Q3. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°. The car is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point

Solution.

Let AB ($=\mathrm{h}$ metres) be the tower.
Let C be the initial position of the car on the highway.

Let D be the position of the car after six seconds.

Let AH be the horizontal through A .

HA is parallel to CDB.

The angle of depression of point C at A is 30°, and the angle of depression of point D at A is 60°.
i.e. $\angle \mathrm{ACB}=\angle \mathrm{HAC}=30^{\circ}$
$\angle \mathrm{ADB}=\angle \mathrm{HAD}=60^{\circ}$
$\angle \mathrm{ABC}=\angle \mathrm{ABD}=90^{\circ}$

Let $\mathrm{CD}=\mathrm{x}$ metres and let $\mathrm{DB}=\mathrm{y}$ metres (distance to be covered to reach the tower).

In right-angled triangle ABD , we have
$\tan 60^{\circ}=\frac{A B}{D B}$
$\Rightarrow \sqrt{3}=\frac{h}{y}$
$\Rightarrow \sqrt{3} y=h$

In right-angled triangle $A B C$, we have
$\tan 30^{\circ}=\frac{A B}{C B}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{C D+D E}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\sqrt{3} y}{x+y}$ [Using equation (1)]
$\Rightarrow x+y=3 y$
$\Rightarrow x=2 y$

The car covers x metres in six seconds. [Given]

Downloaded from www.studiestoday.com

That is, the car covers 2 y metres in six seconds. [Using equation (2)]
\therefore The car covers y metres in three seconds.

Hence, the car will reach the foot of the tower in three seconds.

Q4. From a point on the ground, the angles of elevation of the bottom and top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find height of the tower.

Solution.

Let AB be the transmission tower fixed on the top of the building of height 20 m . Let $\mathrm{AB}=\mathrm{h} \mathrm{m}$ and .P be a point on ground, such that $\angle \mathrm{BPC}=45^{\circ}, \angle \mathrm{APC}=60^{\circ}$.

In rt. $\triangle \mathrm{PCB}, \angle \mathrm{C}=90^{\circ}$
$\begin{array}{lll}\therefore & \frac{\mathrm{BC}}{\mathrm{PC}}=\tan 45^{\circ} \\ \Rightarrow & \underline{20} & =1\end{array}$
In r. $\triangle \mathrm{PCA}, \angle \mathrm{C}=90^{\circ}$
$\therefore \quad$ AC $\quad=\quad \tan 60^{\circ}$
PC
$\Rightarrow \quad \underline{\mathrm{h}+20}=\quad \sqrt{3} \Rightarrow \mathrm{~h}+20=20 \sqrt{ } 3$
20
$\Rightarrow \quad \mathrm{h}=20 \sqrt{3}-20=20(\sqrt{ } 3-1)$
Hence, the height of the tower is $20(\sqrt{3}-1) \mathrm{m}$.

