Downloaded from www.studiestoday.com

Triangles
 Level - 1 (1 MARK EACH)

Fill in the blanks:

1. All \qquad .triangles are similar.
(Equilateral)
2. If a line divides two sides of a triangle in the same ratio, the line is \qquad the third side.
(Parallel)
3. Sides of two similar triangles are in the ratio 4:9.The ratio of areas of these triangles is
\qquad ...
4. Two triangle are said to be similar if. \qquad (Corresponding sides are in same ratio and corresponding angles are equal)
5. Traingle have \qquad .diagonals.
(No)
6. The six elements of a triangle are its three angles and the \qquad (three sides)

Level-2 (2 MARK EACH)

7. Find the length of x in the following cases:

Ans.

$$
\begin{aligned}
& \mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2} \quad(\text { by Pythagoras theorem }) \\
& \mathrm{x}^{2}=5^{2}+12^{2} \\
& \mathrm{x}^{2}=25+144=169 \\
& \mathrm{x}=\sqrt{169} \\
& \mathrm{x}=13
\end{aligned}
$$

8. A Ladder 25 m long reaches a window of a building 20 m above the ground. Determine the distance of the foot of the ladder from the building.

Downloaded from www.studiestoday.com

SOLUTION : suppose that $A B$ is a ladder, B is the window and $C B$ is the building. Then, triangle ABC is right angle at C ,

$$
\begin{aligned}
& \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2} \\
& 25^{2}=\mathrm{AC}^{2}+20^{2} \\
& \mathrm{AC}^{2}=625-400 \\
& =225 \\
& \mathrm{AC}=\sqrt{ } 225=15 \mathrm{~m}
\end{aligned}
$$

Hence, the foot of the ladder is at a distance 15 m from the building.
9. If $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$, such that $\mathrm{AB}=1.2 \mathrm{~cm}$, and $\mathrm{DE}=1.4 \mathrm{~cm}$. Find the ratio of areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$.
Ans. Ratio of Areas of similar triangle is equal to ratio of square of corresponding sides.
Therefore $\frac{\operatorname{ar} \triangle A B C}{\operatorname{ar} \triangle D E F}=A B^{2} / D E^{2}$

$$
\text { Or } \begin{aligned}
\frac{\operatorname{ar} \triangle A B C}{a r \triangle D E F} & =\left(\frac{1.2}{1.4}\right)^{2} \\
& =\frac{144}{196} \\
& =\frac{36}{49}
\end{aligned}
$$

10. If the areas of two similar triangles are equal, prove that they are congruent.

Ans.Let us take two triangles ABC and PQR with equal areas.
Then, we have;

$$
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\frac{1}{1}
$$

In this case;
$\frac{A B^{2}}{P Q^{2}}=\frac{A C^{2}}{P R^{2}}=\frac{1}{1}$

Downloaded from www.studiestoday.com

$\frac{A B}{P Q}=\frac{A C}{P R}=\frac{1}{1}$
$\mathrm{AB}=\mathrm{PQ}$ and $\mathrm{AC}=\mathrm{PR}$
Angle $\mathrm{A}=$ angle P
Hence; the triangles are congruent.(BY SAS)

Level - 3 (3 MARK EACH)

11. In $\triangle A B C, A B=A C=x, B C=5 \mathrm{~cm}$ and the area of the triangle $A B C$ is $15 \mathrm{~cm}^{2}$. Find x.

Ans.

Construction $\mathrm{AD} \perp \mathrm{BC}$ since $\triangle \mathrm{ABC}$ is an isosceles triangle therefore AD bisects BC i: $\mathrm{BD}=\mathrm{DC}=5 / 2$
Area of $\triangle \mathrm{ABC}=1 / 2 \mathrm{BC} \mathrm{X} \mathrm{AD}$
$=1 / 25 \mathrm{XAD}=1 / 2 \mathrm{X} 5 \mathrm{X} \sqrt{x^{2}-B D^{2}}$
$15=1 / 2 \times 5 \times \sqrt{x^{2}-B D^{2}}$
$\frac{15 \times 2}{5}=\sqrt{x^{2}-\left(\frac{5}{2}\right)^{2}}$
Squaring both sides
$36=\mathrm{x}^{2}-\frac{25}{4}$
$x^{2}=36+\frac{25}{4}$
$x=6.5$

Alternative method

Area of $\triangle \mathrm{ABC}=1 / 2 \mathrm{BC} \mathrm{X} \mathrm{AD}$
$15=1 / 2 \times 5 \times \mathrm{AD}$
Or $\mathrm{AD}=30 / 5=6$
In right $\triangle \mathrm{ABD}$
$\mathrm{x}^{2}=36+\frac{25}{4}$ (by Pythagoras theorem)
$x=6.5$

Downloaded from www.studiestoday.com

12. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where \triangle $\mathrm{ABC} \sim \triangle \mathrm{PQR}$, prove that $: \frac{A B}{P Q}=\frac{A D}{P M}$

Solution:

$\frac{A B}{P Q}=\frac{B C}{Q R}$
$\frac{A B}{P Q}=\frac{2 B D}{2 Q M}$
In $\triangle \mathrm{ABD} \& \Delta \mathrm{PQM}$
$\frac{A B}{P Q}=\frac{B D}{Q M}$
Angle $B=$ Angle Q
$\triangle \mathrm{ABD} \sim \Delta \mathrm{PQM}$
Hence;

$$
\frac{A B}{A D}=\frac{P Q}{P M}
$$

(A side and the median of one triangle are in same ratio as a corresponding side and median of another triangle)

$$
\frac{A B}{P Q}=\frac{A D}{P M}
$$

Proved
13. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Downloaded from www.studiestoday.com

Solution:

Height of pole $=A B=6 \mathrm{~m}$ and its shadow $=B C=4 \mathrm{~m}$
Height of tower $=P Q=$? and its shadow $=Q R=28 \mathrm{~m}$
The angle of elevation of the sun will be same at a given time for both the triangles.
Hence; $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
This means;
$\frac{A B}{A C}=\frac{P Q}{Q R}$
Or,$\frac{6}{4}=\frac{P Q}{28}$
Or, $P Q=\frac{6 \times 28}{4}=42 \mathrm{~m}$
Height of tower $=42 \mathrm{~m}$
14. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $\mathrm{CA}^{2}=\mathrm{CB} . C D$.

Solution: In $\triangle B A C$ and $\triangle A D C$;
$\angle B A C=\angle A D C$ (given)
$\angle \mathrm{ACB}=\angle \mathrm{DCA}$ (Common angle)
Hence; $\triangle \mathrm{BAC} \sim \triangle \mathrm{ADC}$
Hence;

Downloaded from www.studiestoday.com

$\frac{C A}{C B}=\frac{C D}{C A}$
(corresponding sides are in same ratio)
Or, $C A \times C A=C B \times C D$
Or, $\mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}$ proved

Level - 4 (4 MARK EACH)

15. In the given figure, $A B C$ and $D B C$ are two triangles on the same base $B C$. If AD intersects BC at O , show that $\frac{\operatorname{ar(ABC)}}{\operatorname{ar(DBC)}}=\frac{A O}{D O}$

Solution: Let us draw altitudes AM and DN on BC; respectively from A and D
$\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{\frac{1}{2} \times B C \times A M}{\frac{1}{2} \times B C \times D N}$
$=\frac{A M}{D N}$
In $\triangle \mathrm{AMO}$ and $\triangle \mathrm{DNO}$;
$\angle \mathrm{AMO}=\angle \mathrm{DNO}$ (Right angle)
$\angle \mathrm{AOM}=\angle \mathrm{DON}$ (Opposite angles)
Therefore, $\triangle \mathrm{AMO} \sim \triangle \mathrm{DNO}$
Hence;

$$
\begin{aligned}
& \frac{A M}{D N}=\frac{A O}{D O} \\
& O r, \frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}
\end{aligned}
$$

Downloaded from www.studiestoday.com

16. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.

Since D, E and F are mid points of $A B, B C$ and $A C$
Hence; $\triangle B A C \sim \triangle D F E$
So,

$$
\frac{D F}{B C}=\frac{E F}{A B}=\frac{D E}{A C}=\frac{1}{2}
$$

So,

$$
\frac{\operatorname{ar}(D E F)}{\operatorname{ar}(A B C)}=\frac{1^{2}}{2^{2}}=\frac{1}{4}
$$

17. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Solution: : Let us take a square with side ' a ' Then the diagonal of square will be a $\sqrt{2}$ Area of equilateral triangle with side ' a '

$$
=\frac{\sqrt{3}}{4} a^{2}
$$

Area of equilateral triangle with side a $\sqrt{2}$
$=\frac{\sqrt{3}}{4}(a \sqrt{2})^{2}$

Ratio of two areas can be given as follows:
$\frac{\frac{\sqrt{3}}{4} \times a^{2}}{\frac{\sqrt{3}}{4} \times 2 a^{2}}=\frac{1}{2}$
18. The perpendicular from A on side $B C$ of $\triangle A B C$ intersect $B C$ at D such that $\mathrm{DB}=3 \mathrm{CD}$. Prove that

$$
2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}
$$

Ans:

Proof: $\mathrm{AD} \perp \mathrm{BC}$
DB=3CD
$B C=D B+C D=3 C D+C D=4 C D$
$\mathrm{CD}=\frac{1}{4} \mathrm{BC}, \mathrm{DB}=\frac{3}{4} \mathrm{BC}$

In rt $\triangle \mathrm{ABD} ; \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\left(\frac{3}{4} B C\right)^{2}$
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\frac{9}{16} B C^{2}$

In rt $\triangle \mathrm{ACD}, \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
$=\mathrm{AD}^{2}+\left(\frac{1}{4} B C\right)^{2}$
$=\mathrm{AD}^{2}+\frac{1}{16} B C^{2}$
$\mathrm{AB}^{2}-\mathrm{AC}^{2}=\frac{1}{2} B C^{2}$
$2 \mathrm{AB}^{2}-2 \mathrm{AC}^{2}=\mathrm{BC}^{2}$
$2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$

