TRIANGLES

IMPORTANT CONCEPTS

TAKE A LOOK

1. Similar Triangles:- Two triangles are said to be similar, if (a) Their corresponding angles are equal and (b) Their corresponding sides are in proportion (or are in the same ratio).
2. Basic proportionality Theorem [or Thales theorem for solution refer NCERT Text Book].
3. Converse of Basic proportionality Theorem.
4. Criteria for similarity of Triangles.
(a) AA or AAA similarity criterion.
(b) S.A.S similarity criterion.
(c) S.S.S similarity criterion.
5. Areas of similar triangles.
6. Pythagoras theorem.
7. Converse of Pythagoras theorem.

Level I

1. If $\triangle A B C$ is similar to $\triangle D E F \angle B=60^{\circ}$ and $\angle c=50^{\circ}$, then degree measure of $\angle D$.

$$
\text { Ans }-70^{\circ}
$$

2. In Fig-(1) if $D E \| B C$ find the value of x.

Fig(i)

Ans-10cm
3. In the given fig-(ii) $P Q 24 \mathrm{~cm}, Q R=26 \mathrm{~cm}, \angle P A R=90^{\circ}, P A=6 \mathrm{~cm}$ and $A R=8 \mathrm{~cm}$ find the value of $\angle Q P R$.

Ans- $\angle \mathrm{QPR}=90^{\circ}$
4. In given fig-(iii) $\triangle A B C$ and $\triangle D E F$ are similar, $B C=3 \mathrm{~cm}, E F=4 \mathrm{~cm}$, and area of triangle $A B C=54 \mathrm{~cm}^{2}$ find the area of Δ DEF.

5. If the area of two similar triangles are in the ratio 16:25 then the ratio of their corresponding sides is.

Ans-4:5
6. If $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle D E F)=25: 81$ then $A B: D E$ is.

Ans-5:9
7. A right triangle has hypotenuse $P \mathrm{~cm}$ and one side $q \mathrm{~cm}$. If $p-q=1$, Find the length of the third sides.

Ans- $\sqrt{2 p-1}$

LEVEL- II

1. In given figure(i), $P Q|\mid S R$ and $P O: R O=Q O: S O$ find the value of x.

2. In the given fig-(ii) express x in terms of a, b and c.

Ans: 7

Ans: $\mathrm{x}=\frac{a c}{b+c}$
3. In fig(iii) $\triangle P Q R$ is a triangle right angled at P and M is point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M \times M R$.

4. The diagonals of a quadrilaterals intersect each other at the point 0 such that $A O / O C=B O / D O$ show that $A B C D$ is a trapezium.
5. A Man goes 10 m due east and then 30 m due north. Find the distance from the starting points.

Ans-31.62m
6. Two poles of height 6 m and 11 m stand on a plane ground. If the distance between their feet is 12 m find the distance between their tops.

Ans- 13 cm
7. Prove that the line joining the mid points of any two sides of a triangle is parallel to the third sides.
8. $A B C$ is an isosceles triangle angled at B. Two equilateral triangles are constructed on side $B C$ and $A C$ in Fig-(iv), prove that area of $\triangle B C D=1 / 2$ area of $A C E$.

LEVEL-III

1. In fig-(i) $\mathrm{BD} \perp \mathrm{BC}, \mathrm{DE} \perp \mathrm{AB}$ and $\mathrm{AC} \perp \mathrm{BC}$, prove that $\frac{B E}{D E}=\frac{A C}{B C}$.

2. D is a point on the side of $\triangle \mathrm{ABC}$ such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$ prove that $\overline{C D}=\overline{C B}$ or $C A^{2}=B C . C D$.
3. If the areas of two similar triangles are equal then the triangles are congruent.
4. The areas of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are $25 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If $Q R=9.8 \mathrm{~cm}$ find $B C$.

Ans-7cm
5. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of an equilateral triangle described on one of it diagonals.
6. $B L$ and $C M$ are medians of a $\triangle A B C$, right angled at A. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$
7. In an equilateral triangle prove that three times the square of one side is equal to four times the square of one of its altitudes.
8. In fig(ii) A triangle $A B C$ is right angled at B side $B C$ is trisected at point D and E prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$

LEVEL-IV

1. Prove that if a line is drawn parallel to one side of a triangle the other two sides are divided in the same ratio.
2. $A B C$ is a triangle, $P Q$ is a line segment intersecting $A B$ in P and $A C$ in Q such that $P Q \| B C$ and divides $\triangle A B C$ into two parts equal in area find $B D / A B$.
3. In the $\operatorname{Fig}(i) P A, Q B$ and $R C$ are perpendicular to $A C$ prove that $1 / x+1 / y=1 / z$.

4. State and prove converse of Basic proportionality theorems[Refer to your text Book for solution]
5. In Fig-(ii) $D E$ || $B C$ and $A D / B D=3 / 5$ if $A C=4.8 \mathrm{~cm}$ find the length of $A E$.

Fig-(ii)
Ans-AE=1.8 cm
6. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of theirs corresponding sides [Refer to your text book for proof].
7. The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangle is 4.5 cm find the corresponding altitude of the similar triangle.

Ans-3.5 c m
8. State and prove Pythagoras theorem [Refer text book for proof and statement].
9. In an equilateral triangle $A B C, D$ is a point on side $B C$, such that $B D=1 / 3 B C$. Prove that $9 A D^{2}=7 A B^{2}$.
10. State and prove Pythagoras and its converse theorems. [Refer text book for proof and statement].
11. $\triangle A B C$ is an isosceles triangle in which $A C=B C$. If $A B^{2}=2 A C^{2}$ then prove that $\triangle A B C$ is a right triangle.

SELF EVALUATION QUESTIONS

1. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$ show that $C A^{2}=B C . C D$.
2. In Fig-(i) if $\mathrm{LM} \| \mathrm{BC}$ and $\mathrm{LN} \| \mathrm{CD}$ prove that $\frac{A M}{A B}=\frac{A N}{A D}$

3. S and T are points on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle p=\angle R T S$ show that $\triangle R P Q=\triangle R T S$.
4. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angles at C. Prove that $A E^{2}+B D^{2}$ $=A B^{2}+D E^{2}$.
5. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
6. Two poles of height a meters and b meters are p meters apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{a b}{a+b}$ meters.
7. The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D. Such that $B D=3 C D$ prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.
