Downloaded from www.studiestoday.com

Triangles

<1M>
1.In $\sqrt{\Delta} A B C$ right angled at $C, A D$ is median. Then $A B^{2}=$
(A) $A C^{2}-A D^{2}$
(B) $A D^{2}-A C^{2}$
(C) $3 A C^{2}-4 A D^{2}$
(D) $4 A D^{2}-3 A C^{2}$
2.Which of the following statement is true?
(A) Any two right triangles are similar
(B) Any two squares are similar
(C) Any two rectangles are similar
(D) Both b and c
3.In the given fig. $A B \| M N$, If $P A=x-2, P M=x ; P B=x-1$ and $P N=x+2$, find the value of ' x '.

(A) 2
(B) 3
(C) 4
(D) none
4.If three or more parallel lines are intersected by transversals, the intercepts made by them on the transversals are

(A) $\frac{\mathrm{AD}}{\mathrm{BE}}=\frac{\mathrm{BE}}{\mathrm{CF}}$
(B) $\frac{\mathrm{AE}}{\mathrm{BD}}=\frac{\mathrm{BF}}{\mathrm{CE}}$
(C) $\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{DF}}{\mathrm{DE}}$
(D) $\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{DE}}{\mathrm{EF}}$
5.If $A B C$ is an equilateral triangle with side 12 cm , then the area of triangle formed by joined its mid points is :
(A) $\mid 9 \sqrt{3} \mathrm{sq} \mathrm{cm}$
(B) $2 \sqrt{2} \mathrm{sq} \mathrm{cm}$
(C) 64 sq cm
(D) none of these
6.The areas of two similar triangles are 121 cm 2 and 64 cm 2 respectively. If the median of the first triangle is 12.1 cm . find the corresponding median of the other.
(A) 8 cm

Downloaded from www.studiestoday.com

(B) 8.5 cm
(C) 8.9 cm
(D) 8.8 cm
7.A girl of height 120 cm is walking from the base of a lamp-post at a speed to $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.

(A) 1.6 m
(B) 2.2 m
(C) 2.4 m
(D) 2.6 m
8. The line segment joining the midpoints of any two sides of a triangle is parallel to

(A) right angle
(B) isosceles triangle
(C) second side
(D) Third side
9.If D, E, F are the midpoints of sides $B C, C A, A B$ of $A B C$. Then the $D E F$ and $A B C$ are \qquad
(A) congruent
(B) similar
(C) both A \& B
(D) none of these
10.Given $\mathrm{MN}\left|\mid \mathrm{BC}, \bar{\Delta}_{\mathrm{ABC}}\right.$ and $\bar{\Delta}_{\mathrm{ANM}}$ are \qquad .

(A) similar
(B) congruent
(C) neither similar nor congruent
(D) none of these
11.If $\triangle \mathrm{ABC} \cong \cong^{\prime} \triangle \mathrm{PQR}$ and then find $\angle \mathrm{R}$.

(A) 20°
(B) 30°

Downloaded from www.studiestoday.com

(C) 35°
(D) 37°
12.In $\triangle A B C, A B>A C$ and $A D \mid \perp B C$. Then $A B^{2}-A C^{2}$
(A) $B D^{2}+A D^{2}$
(B) $B D^{2}+C D^{2}$
(C) $B D^{2}+A C^{2}$
(D) $B D^{2}-C D^{2}$
13.If the corresponding sides of two triangles are proportional then they are
(A) congruent
(B) similar
(C) proportional
(D) none of these
14.From given fig. express ' x ' in terms of a, b, c.

(A) $\frac{-a c}{b+c}$
$\frac{a c}{a c}$
(B) $\overline{b-c}$
(C) $\frac{a c}{b+c}$
(D) None
15.The areas of two similar triangles are $64 \mathrm{~cm}^{2}, 49 \mathrm{~cm}^{2}$. Altitude of first one is 6 cm . Then altitude of second in cm is.
(A) 5.25 cm
(B) 3.5
(C) 27.56
16. $A B C$ and $\triangle D E F$ are similar, in which $B C=3.5 \mathrm{~cm}, E F=2.5 \mathrm{~cm}$ and area of $\triangle A B C=7 \mathrm{sq} \mathrm{cm}$. Then area of $\triangle D E F$ in sq cm is
(A) 4.59
(B) 5.49
(C) 9.54
(D) 3.57
17.If the ratios of areas of two similar triangles are 81 : 49 the ratios of their corresponding anglebisector segments is:
(A) $5: 4$
(B) $9: 7$
(C) $4: 5$
(D) $625: 256$
18.In the figure $\measuredangle_{\mathrm{ABC}}$ is obtuse. Then $\mathrm{AC}^{2}=$

(A) $A B^{2}+B C^{2}-2 B C$. $B D$
(B) $A B^{2}+B C^{2}$

Downloaded from www.studiestoday.com

(C) $A B^{2}+B C^{2}+2 B C$. $B D$
(D) $A D^{2}+B D^{2}$
19.In the figure, $C D \perp A B, C D=p$. Then $\frac{c}{a}=$
(A) $\frac{c}{b}$
(B) $-p / b$
(C) $\frac{b}{p}$
(D) None of these
20.In rhombus $\mathrm{ABCD}, \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=$

(A) $O A^{2}+O B^{2}$
(B) $O B^{2}+O C^{2}$
(C) $O C^{2}+O D^{2}$
(D) $A C^{2}+B D^{2}$
21.A ladder is placed against a wall such that its foot is at a distance of 5.5 m from the wall and its top reaches a window 9 m above the ground. Find the length of the ladder.

(A) 10.52 m
(B) 10.54 m
(C) 11 m
(D) 10.9 m
22.In a right angle triangle, one of the angles is 60 degree, the side opposite to this angle is .
(A) $\left\lvert\, \frac{1}{2} \times\right.$ hypotenuse \mid
(В) $\left\lvert\, \frac{1}{\sqrt{2}} \times h\right.$ ypotenuse
(С) $\overline{\frac{2}{3} \times h \text { potenuse }}$
(D) $\frac{\sqrt{3}}{2} \times h$ pootenuse
23. In equilateral triangle $A B C$, if $A D \perp B C$, then:
(A) $\left|2 A B^{2}=3 A D^{2}\right|$
(B) $4 A B^{2}=3 A D^{2}$
(C) $3 A B^{2}=4 A D^{2}$
(D) $\overline{3 A B^{2}=2 A D^{2}}$
24.On joining the mid points of the sides of a triangle along with any of the vertices as the fourth point make a .
(A) parallelogram
(B) Rhombus
(C) rectangle
(D) Square.
25.The triangle with measurements $a=(2 p-1), \sqrt{b=2 \sqrt{2 p}}, c=(2 p+1)$ is
(A) equilateral
(B) right angled
(C) isosceles
(D) none of these
26.In the fig. $A B C$ is a rt. $\Delta, r t$. angled at B. $A D$ and $C E$ are the two medians drawn from A and C

(A) $\sqrt[{\sqrt{5}_{\mathrm{cm}}}]{ }$
(B) $\sqrt{7 \mathrm{~cm}}$
(C) $2 \sqrt{5 \mathrm{~cm}}$
(D) none of these

<2M>

27. The perimeters of two similar triangles are 36 cm and 48 cm respectively. If one side of the first triangles is 9 cm , what is the corresponding side of the other triangle?
28. $A B C$ is a right triangle right-angled at B. Let D and E be any points on $A B$ and $B C$ respectively. Prove that $A E^{2}+C D^{2}=A C^{2}+D E^{2}$
29.Any point X inside the $\overline{\triangle D E F}$ is joined to its vertices. From a point P in $D X, P Q$ is drawn parallel to $D E$ meeting XE at Q and QR is drawn parallel to EF meeting XF in R. Prove that $P R \| D F$
<3M>
$30 . \mathrm{A}$ girl of height 90 cm is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.
29. A Point O in the interior of a rectangle $A B C D$ is joined with each of the vertices A, B, C and D prove that $O B^{2}+O D^{2}=O C^{2}+O A^{2} \mid$
30.

In a trapezium $|A B C D, A B| \| D C$ and $D C=2 A B ; F E \mid$ drawn parallel to $A B C$ uts $\sqrt{A D}$ in \bar{F} and $\overline{B C}$ in
\bar{E} such that $\left|\frac{B E}{E C}=\frac{3}{4}\right|$ Diagonal $\mid D B$ intersects

Downloaded from www.studiestoday.com

$F E_{\text {at }} \vec{G}$. Prove that $7 F E=10 A B$
33. $A B C$ is a triangle in which $A B=A C$ and D is any point in $B C$. Prove that $A B^{2}-A D^{2}=B D C D$
34. D, E and F are respectively mid-points of the sides of BC, CA and AB of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$
35.In figure $A B C \mid$ is a right triangle, right angled at B . Medians $\mid A D$ and $|C E|$ are of respective lengths 5 cm and $\sqrt{2 \sqrt{5}} \mathrm{~cm}$. Find the length of $\overline{A C}$.
36.

ABC is a right triangle right-angled at C . Let $|B C=a, C A=b, A B=c|$ and let $\bar{p}_{\text {be the length of }}$ perpendicular form C on $A B$ prove that
(i) $c p=a b$
(ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
37.In Figure if $A D \perp B C$ prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$
<6M>
38. Prove that the ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
39.Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides
Use the above theorem in the figure to prove that
$P R^{2}=P Q^{2}+Q R^{2}-2 Q M . Q R$
40.If a line is drawn parallel to one side of a triangle intersecting the other two sides, then the other sides are divided in the same ratio. Prove this theorem Using above theorem, prove that in the figure if $A B C D$ is a trapezium in which

