Downloaded from www.studiestoday.com

1.Real numbers (Key Points)

1. **Euclid's Division lemma:- G**iven Positive integers a and b there exist unique integers q and r satisfying

a=bq+r, where $0 \le r < b$, where a, b, q and r are respectively called as dividend, divisor, quotient and remainder.

2. **Euclid's division Algorithm:-** To obtain the HCF of two positive integers say c and d, with c>0, follow the steps below:

Step I: Apply Euclid's division lemma, to c and d, so we find whole numbers, q and r such that c = dq + r, $0 \le r < d$.

Step II: If r=0, d is the HCF of c and d. If $r \neq 0$, apply the division lemma to d and r.

Step III: Continue the process till the remainder is zero. The divisor at this stage will be the required HCF

3. The Fundamental theorem of Arithmetic:-

Every composite number can be expressed (factorised) as a product of primes, and this factorization is unique, apart from the order in which the prime factors occur.

Ex.:
$$24 = 2 X 2 X 2 X 3 = 3 X 2 X 2 X 2$$

Theorem: LET x be a rational number whose decimal expansion terminates. Then x can be expressed in the form

Of $\frac{p}{q}$ where p and q are co-prime and the prime factorisation of q is the form of 2^n . 5^m , where n, m are non negative integers.

Ex.
$$\frac{7}{10} = \frac{7}{2 \times 5} = 0.7$$

Theorem: LET $x = \frac{p}{q}$ be a rational number such that the prime factorisation of q is not of the form of 2^n . 5^m , where n, m are non negative integers. Then x has a decimal expansion which is non terminating repeating (recurring).

Ex.
$$\frac{7}{6} = \frac{7}{2 \times 3} = 1.1666 \dots$$

Theorem: For any two positive integers a and b,

 $HCF(a,b) \times LCM(a,b) = a \times b$

Ex.: 4 & 6; HCF (4,6) = 2, LCM (4,6) = 12; HCF X LCM = 2 X 12 = 24

Ans. : $a \times b = 24$

(Level- 1)

1. If $\frac{p}{q}$ is a rational number ($q \neq 0$). What is the condition on q so that the decimal representation of $\frac{p}{q}$ is terminating?

Ans. q is form of 2^n . 5^m where n, m are non negative integers.

2. Write a rational number between $\sqrt{2}$ and $\sqrt{3}$.

Ans. 1.5

3. The decimal expansion of the rational no. $\frac{43}{2^4.5^3}$ will terminate after how many of decimals?

Ans. After 4 places of decimal.

4. Find Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

Ans. 19000

5. State whether the number $(\sqrt{2} - \sqrt{3})(\sqrt{2} + \sqrt{3})$ is rational or irrational justify.

Ans. Rational

6. Write one rational and one irrational number lying between 0.25 and 0.32.

Ans. One rational no. = 0.26, one irrational no. = 0.27010010001.......

7. Express 107 in the form of 4q + 3 for some positive integer.

Ans. $4 \times 26 + 3$

8. Write whether the rational number $\frac{51}{1500}$ will have a terminating decimal expansion or a non terminating repeating decimal expansion.

Ans. Terminating.

(level - 2)

1. Use Euclid's division algorithm to find the HCF of 1288 and 575.

Ans. 23.

- 2. Check whether $5 \times 3 \times 11 + 11$ and $5 \times 7 + 7 \times 3 + 3$ are composite number and justify.

 Ans. Composite number.
- 3. Check whether 6^n can end with the digit 0, where n is any natural number.

Ans. No, 6^n can not end with the digit 0.

4. Given that LCM (26, 169) = 338, write HCF (26, 169).]

Ans. 13

5. Find the HCF and LCM of 6, 72 and 120 using the prime factorization method.

Ans. HCF = 6LCM = 360

(level - 3)

- 1. Show that $\sqrt{3}$ is an irrational number.
- 2. Show that $5 + 3\sqrt{2}$ is an irrational number.
- 3. Show that square of an odd positive integer is of the form 8m + 1, for some integer m.
- 4. Find the LCM & HCF of 26 and 91 and verify that $LCM \times HCF = product \ of \ the \ two \ numbers$.

Ans. LCM=182, HCF=13

(PROBLEMS FOR SELF EVALUATION/HOTS)

- 1. State the fundamental theorem of Arithmetic.
- 2. Express 2658 as a product of its prime factors.
- 3. Show that the square of an odd positive integers is of the form 8m + 1 for some whole number m.
- 4. Find the LCM and HCF of 17, 23 and 29.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

- 5. Prove that $\sqrt{2}$ is not a rational number.
- 6. Find the largest positive integer that will divide 122, 150 and 115 leaving remainder 5, 7 and 11 respectively.
- 7. Show that there is no positive integer n for which $\sqrt{n-1} + \sqrt{n+1}$ is rational.
- 8. Using prime factorization method, find the HCF and LCM of 72, 126 and 168. Also show that $HCF \ X \ LCM \neq product \ of \ the \ three \ numbers.$

2. Polynomials (Key Points)

Polynomial:

An expression of the form $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ where $a_n \neq 0$ is called a polynomial in variable x of degree n. where; $a_0, a_1, ---- a_n$ are real numbers and each power of x is a non negative integer. Ex.:- $2x^2 - 5x + 1$ is a polynomial of degree 2.

Note: $\sqrt{x} + 3$ is not a polynomial.

- A polynomial p(x) = ax + b of degree 1 is called a linear polynomial. Ex. 5x 3, 2x etc
- A polynomial $p(x) = ax^2 + bx + c$ of degree 2 is called a quadratic polynomial. Ex. $2x^2 + x c$ 1, $1 - 5x + x^2$ etc.
- A polynomial $p(x) = ax^3 + bx^2 + cx + d$ of degree 3 is called a cubic polynomial. Ex. $\sqrt{3}x^3 - x + \sqrt{5}$. $x^3 - 1$ etc.

Zeroes of a polynomial: A real number k is called a zero of polynomial p(x)if p(x) = 0. The graph of y = p(x) intersects the X- axis.

- A linear polynomial has only one zero.
- A Quadratic polynomial has two zeroes.
- A Cubic polynomial has three zeroes.

For a quadratic polynomial: If α , β are zeroes of $P(x) = ax^2 + bx + c$ then :

- 1. Sum of zeroes = $\alpha + \beta = \frac{-b}{a} = \frac{-Coefficient\ of\ x}{coefficient\ of\ x^2}$ 2. Product of zeroes = α . $\beta = \frac{c}{a} = \frac{Constant\ term}{coefficient\ of\ x^2}$
- A quadratic polynomial whose zeroes are α and β , is given by:

$$p(x) = x^{2} - (\alpha + \beta)x + \alpha\beta$$

$$= x^{2} - (sum \ of \ zeroes)x + product \ of \ zeroes.$$

If α , β and γ are zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ then:

$$*\alpha + \beta + \gamma = \frac{-b}{a}$$

$$*\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

$$*\alpha\beta\gamma = \frac{-d}{a}$$

Division algorithm for polynomials: If p(x) and g(x) are any two polynomials with $g(x) \neq 0$, then we

Downloaded from www.studiestoday.com