Downloaded from www.studiestoday.com

1.Real numbers
 (Key Points)

1. Euclid's Division lemma:- Given Positive integers a and b there exist unique integers q and r satisfying
$a=b q+r$, where $0 \leq r<b$, where a, b, q and r are respectively called as dividend, divisor, quotient and remainder.
2. Euclid's division Algorithm:- To obtain the HCF of two positive integers say c and d, with $c>0$, follow the steps below:

Step I: Apply Euclid's division lemma, to c and d, so we find whole numbers, q and r such that $c=d q$ $+r, 0 \leq r<d$.
Step II: If $r=0, \mathrm{~d}$ is the HCF of c and d . If $\mathrm{r} \neq 0$, apply the division lemma to d and r .
Step III: Continue the process till the remainder is zero. The divisor at this stage will be the required HCF
3. The Fundamental theorem of Arithmetic:-

Every composite number can be expressed (factorised) as a product of primes, and this factorization is unique, apart from the order in which the prime factors occur.
Ex.: $24=2 \times 2 \times 2 X 3=3 X 2 X 2 X 2$

Theorem: LET x be a rational number whose decimal expansion terminates. Then x can be expressed in the form

Of $\frac{p}{q}$ where p and q are co-prime and the prime factorisation of q is the form of $2^{n} .5^{m}$, where n, m are non negative integers.
Ex. $\frac{7}{10}=\frac{7}{2 X 5}=0.7$
Theorem: LET $x=\frac{p}{q}$ be a rational number such that the prime factorisation of q is not of the form of $2^{n} .5^{m}$, where n, m are non negative integers. Then x has a decimal expansion which is non terminating repeating (recurring).

$$
\text { Ex. } \frac{7}{6}=\frac{7}{2 \times 3}=1.1666 \ldots \ldots .
$$

Theorem: For any two positive integers a and b ,
$\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=a \times b$
Ex.: 4 \& 6; $\operatorname{HCF}(4,6)=2, \operatorname{LCM}(4,6)=12 ; \operatorname{HCF} \times \operatorname{LCM}=2 \times 12=24$
Ans. $: a X b=24$

(Level-1)

1. If $\frac{p}{q}$ is a rational number $(q \neq 0)$. What is the condition on q so that the decimal representation of $\frac{p}{q}$ is terminating?

Ans. $\quad q$ is form of $2^{n} \cdot 5^{m}$ where n, m are non ne gative integers.
2. Write a rational number between $\sqrt{2}$ and $\sqrt{3}$.

Ans. 1.5
3. The decimal expansion of the rational no. $\frac{43}{2^{4} .5^{3}}$ will terminate after how many of decimals?

Ans. After 4 places of decimal.

Downloaded from www.studiestoday.com

5. State whether the number $(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})$ is rational or irrational justify.

Ans. Rational
6. Write one rational and one irrational number lying between 0.25 and 0.32 .

Ans. One rational no. $=0.26$, one irrational no. $=0.27010010001$
7. Express 107 in the form of $4 q+3$ for some positive integer.

Ans. $4 \times 26+3$
8. Write whether the rational number $\frac{51}{1500}$ will have a terminating decimal expansion or a non terminating repeating decimal expansion.

Ans. Terminating.

(level-2)

1. Use Euclid's division algorithm to find the HCF of 1288 and 575.

Ans. 23.
2. Check whether $5 \times 3 \times 11+11$ and $5 \times 7+7 X 3+3$ are composite number and justify.

Ans. Composite number.
3. Check whether 6^{n} can end with the digit 0 , where n is any natural number.

Ans. No, 6^{n} can not end with the digit 0 .
4. Given that $\operatorname{LCM}(26,169)=338$, write $\operatorname{HCF}(26,169)$.]

Ans. 13
5. Find the HCF and LCM of 6, 72 and 120 using the prime factorization method.

Ans. $\mathrm{HCF}=6$
LCM $=360$

(level-3)

1. Show that $\sqrt{3}$ is an irrational number.
2. Show that $5+3 \sqrt{2}$ is an irrational number.
3. Show that square of an odd positive integer is of the form $8 m+1$, for some integer m.
4. Find the LCM \& HCF of 26 and 91 and verify that LCM X HCF = product of the two numbers.

$$
\text { Ans. } \quad \mathrm{LCM}=182, \mathrm{HCF}=13
$$

(PROBLEMS FOR SELF EVALUATION/HOTS)

1. State the fundamental theorem of Arithmetic.
2. Express 2658 as a product of its prime factors.
3. Show that the square of an odd positive integers is of the form $8 m+1$ for some whole number m.
4. Find the LCM and HCF of 17,23 and 29.

Downloaded from www.studiestoday.com

5. Prove that $\sqrt{2}$ is not a rational number.
6. Find the largest positive integer that will divide 122,150 and 115 leaving remainder 5,7 and 11 respectively.
7. Show that there is no positive integer n for which $\sqrt{n-1}+\sqrt{n+1}$ is rational.
8. Using prime factorization method, find the HCF and LCM of 72, 126 and 168. Also show that HCF X LCM \neq product of the three numbers.

2. Polynomials

(Key Points)

Polynomial:

An expression of the form $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+----+a_{n} x^{n}$ where $a_{n} \neq 0$ is called a polynomial in variable x of degree n. where; $a_{0}, a_{1},----a_{n}$ are real numbers and each power of x is a non negative integer.
Ex.:- $2 x^{2}-5 x+1$ is a polynomial of degree 2 .
Note: $\sqrt{x}+3$ is not a polynomial.

- A polynomial $p(x)=a x+b$ of degree 1 is called a linear polynomial. Ex. $5 \mathrm{x}-3,2 \mathrm{x}$ etc
- A polynomial $p(x)=a x^{2}+b x+c$ of degree 2 is called a quadratic polynomial.Ex. $2 \mathrm{x}^{2}+\mathrm{x}-$ $1,1-5 x+x^{2}$ etc.
- A polynomial $p(x)=a x^{3}+b x^{2}+c x+d$ of degree 3 is called a cubic polynomial. Ex. $\sqrt{3} x^{3}-x+\sqrt{5}, x^{3}-1$ etc.

Zeroes of a polynomial: A real number k is called a zero of polynomial $p(x)$ if $p(x)=0$. The graph of $y=p(x)$ intersects the X - axis.

- A linear polynomial has only one zero.
- A Quadratic polynomial has two zeroes.
- A Cubic polynomial has three zeroes.

For a quadratic polynomial: If α, β are zeroes of $P(x)=a x^{2}+b x+c$ then :

1. Sum of zeroes $=\alpha+\beta=\frac{-b}{a}=\frac{- \text { Coefficient of } x}{\text { coefficient of } x^{2}}$
2. Product of zeroes $=\alpha \cdot \beta=\frac{c}{a}=\frac{\text { Constant term }}{\text { coefficient of } x^{2}}$

- A quadratic polynomial whose zeroes are α and β, is given by:

$$
\begin{aligned}
p(x) & =x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-(\text { sum of zeroes }) x+\text { product of zeroes. }
\end{aligned}
$$

- If α, β and γ are zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ then:

$$
\begin{aligned}
& * \alpha+\beta+\gamma=\frac{-b}{a} \\
& * \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a} \\
& * \alpha \beta \gamma=\frac{-d}{a}
\end{aligned}
$$

Division algorithm for polynomials: If $p(x)$ and $g(x)$ are any two polynomials with $g(x) \neq 0$, then we

