Downloaded from www.studiestoday.com

REAL NUMBER

LEVEL WISE QUESTIONS AND SOLUTIONS

LEVEL- 1 (1 mark Each)

1. Find HCF of 128 and 216.

Solution 1: Two numbers are : 216, 128

$$
216>128
$$

By using Euclid division lemma :

$$
\begin{array}{ll}
216=128 \times 1+88 & (\mathrm{R} \neq 0) \\
128=88 \times 1+40 & (\mathrm{R} \neq 0) \\
88=40 \times 2+8 & (\mathrm{R} \neq 0) \\
40=8 \times 5+0 &
\end{array}
$$

Here R $=0$,

$$
\text { Divisor is } 8 \text {, so } \mathrm{HCF}=8 \text {. }
$$

1Mark
2. $\operatorname{Given} \operatorname{HCF}(306,657)=9$. Find $\operatorname{LCM}(306,657)$

Solution 2: $\quad \mathrm{HCF}=9$, Ist number $=306$, IInd number $=657$
We know that :
HCFxLCM $=$ Products of two number

$$
9 \times \text { LCM }=306 \times 657
$$

LCM $=\frac{306 \times 657}{9}$
$\mathrm{LCM}=22338$.
3. Prove that $3+2 \sqrt{5}$ is an irrational number.

Solution 3: Let us suppose that $3+2 \sqrt{5}$ is rational so, we can find co prime a and b where a and b are integers and $\mathrm{b} \neq 0$.
So, $3+2 \sqrt{5}=\frac{a}{b}$

$$
\begin{aligned}
& 2 \sqrt{5}=\frac{a}{b}-3 \\
& \sqrt{5}=\frac{a-3 b}{2 b}
\end{aligned}
$$

Since a and b both are integers
$\therefore \frac{a-3 b}{2 b}$ is rational number, so, $\sqrt{5}$ is also rational number
But this contradicts the facts that $\sqrt{5}$ is irrational.
\therefore our supposition is wrong.
Hence $3+2 \sqrt{5}$ is rational.
1 Mark
4. Explain why $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$ is a composite number.

Solution 4: we have
$7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$
$5(7 \times 6 \times 1 \times 4 \times 3 \times 2 \times 1+1)$
$5(1008+1)$
5(1009)
5045
The of factors of 5045 are $1,5,1009,5045$.
It has more than two factors, so it is a composite number

LEVEL -2 (2 marks)

1. Check whether 6^{n} can end with the digit 0 . For any natural number n.

Solution 1. : Let us suppose that 6^{n} ends with the digits 0 for some $n \in N$ So, 6^{n} is divisible by 5

But prime factor of 6 are 2 and 3

Downloaded from www.studiestoday.com

\therefore prime factor of 6^{n} are $(2 \times 3)^{\mathrm{n}}$
It is clear that in prime factorization of 6^{n} there is no place of 5.
So our supposition is wrong. Hence there exists no any natural number n for which 6^{n} ends with digit zero.

2 Marks
2. Find the LCM and HCF of 91 and 26, also verify that $\mathrm{HCF} \times \mathrm{LCM}=$ product of two Solution: Two number are 91 and 26

$$
\begin{aligned}
& 91=7 \times 13 \\
& 26=2 \times 13 \\
& H C F=13 \\
& \text { LCM }=13 \times 2 \times 7=182
\end{aligned}
$$

1 Mark
Verification
HCFXLCM = Products of two number
$13 \times 182=91 \times 26$
23662366
1Mark
3. The HCF of two number is 4 and their LCM is 9696 , if one number is 96 ,find the other number.

Solution: $\quad \mathrm{HCF}=4$

$$
\mathrm{LCM}=9696, \text { Ist number }=96
$$

We know that HCFXLCM = Ist x IInd
1Mark

$$
4 x 9696=96 \text { x IInd }
$$

$\frac{4 x 9696}{96}=$ IIndIInd number $=404$
1 Mark

4 .Find the LCM and HCF of 12,15 and 21 by prime factorization method.
Solution4 : numbers are $12,15,21$

Downloaded from www.studiestoday.com

$$
\begin{aligned}
& 12=2 \times 2 \times 3 \\
& 15=3 \times 5 \\
& 21=3 \times 7
\end{aligned}
$$

1Mark
So, $\mathrm{HCF}=3$
$\mathrm{LCM}=3 \mathrm{X} 2 \mathrm{X} 2 \times 5 \mathrm{X} 7=420$.
1 Mark

LEVEL - 3 (3 marks)

1. Prove that $\sqrt{2}$ is irrational number.

Solution 1: Let us suppose that $\sqrt{2}$ is rational number, so it can be put in the form of $\frac{p}{q}$ $\mathrm{q} \neq 0$, and p and q are co prime
$\therefore \sqrt{2}=\frac{p}{q} \quad$ squaring both side

$$
2=\frac{p^{2}}{q^{2}}
$$

$$
\mathrm{q}^{2}=\frac{p^{2}}{2} \text { here } \mathrm{p}^{2} \text { is divisible by } 2 \text {, so } \mathrm{p} \text { is also divisible by } 2 . \quad 1 \text { Mark }
$$

Let $\mathrm{p}=2 \mathrm{r}$ putting this value in above relation

$$
\mathrm{q}^{2}=\frac{4 r^{2}}{2}
$$

so, $\mathrm{r}^{2}=\frac{q^{2}}{2}$, here q^{2} is divisible by 2 , so q is also divisible by 2
from these two p and q both divisible by 2 but it is suppose p and q are co prime which is contradiction so, $\sqrt{2}$ is irrational.

3 Show that the square of any positive integer is of the form 3 m or $3 \mathrm{~m}+1$, for some integer m.

Solution 3: Let a be any positive integer then it is of the form $3 q, 3 q+1$ or $3 q+2$ If $\mathrm{a}=3 \mathrm{q} \quad$ squaring both sides,

$$
\begin{aligned}
& \qquad \begin{array}{ll}
\begin{aligned}
a^{2}= & 9 q^{2} \\
& =3\left(3 q^{2}\right) \\
= & 3 m, \quad \text { where } m=3 q^{2}
\end{aligned} \\
\text { If } \quad a=3 q+1 \quad \text { squaring both sides, } \\
a^{2}= & (3 q+1)^{2} \\
& =9 q^{2}+1+2 \times 3 q \times 1 \\
= & 3\left(3 q^{2}+2 q\right)+1 \\
& =3 m+1, \quad \text { where } m=\left(3 q^{2}+2 q\right)
\end{array} \\
& \text { Where } m \text { is also an integer, }
\end{aligned}
$$

Hence, square of any positive integer is either of the form 3 m or $3 \mathrm{~m}+1$ for some integer m.

4 Find the LCM and HCF of 510 and 92 and verify the thatLCMxHCF $=$ Product of two no.

Solution 4. Two number are 510 and 92

$$
\begin{aligned}
& 510=2 \times 3 \times 5 \times 17 \\
& 92=2 \times 2 \times 23
\end{aligned}
$$

$\mathrm{HCF}=21$ Mark

$$
\mathrm{LCM}=2 \mathrm{X} 2 \mathrm{X} 3 \mathrm{X} 5 \mathrm{X} 17 \mathrm{X} 23=23460
$$

Verification : LCM X HCF $=23460 \mathrm{X} 2=46920$
Products of two numbers $=510 \times 92=46920$
Hence verified.
1 Mark

LEVEL -4 (4 marks)

1:- Show that $3 \sqrt{ } 2$ is irrational.
Sol. 1 :- Let $3 \sqrt{ } 2$ is rational.
Therefore $\mathrm{x}=3 \sqrt{ } 2$
=> $x / 3=\sqrt{ } 2$
2 Marks
$=>x / 3$ is rational and $\sqrt{ } 2$ is also rational.

But this contradicts the fact that V 2 is irrational.
=> $3 \sqrt{ } 2$ is irrational.
2 Marks

2 :- Explain why $(7 \times 11 \times 13)+13$ is a composite number.
Sol. 2 :- ($7 \times 11 \times 13$) +13
2 Marks
$=13 \times(7 \times 11+1) \times 1$
So , it is product of more than 2 factors. Hence it is a composite number. 2 Marks

3 : Find the HCF of 616 and 32 using Euclid's division algorithm.
Sol. 3:- Using Euclid's division lemma,

$$
a=b q+r, .0 \leq r<b
$$

Step 1: $616=32 \times 19+8$
2 Marks
Step 2: 32 = 8 x $4+0$
HCF of 616 and 32 is 8 .
4 .Use Euclid's division algoritha to find the largest number which divides 957 and 1280 leaving remainder 5 in each case.

Solution 4: $957-5=952$ and $1280-5=1275$, are completely divisible by required number.
Now find the HCF by Euclid division lemma,
$1275>952$ by apply division lemma

$$
1275=952 \times 1+323(\text { since } R \neq 0)
$$

2 Marks
$952=323 \times 2+306 \quad($ since $R \neq 0)$

$$
\begin{aligned}
& 323=306 \times 1+17 \quad(\text { since } \mathrm{R} \neq 0) \\
& 306=17 \times 18+0 \quad \text { here } \mathrm{R}=0
\end{aligned}
$$

Divisor in the last step is 17
\therefore HCF of 1275 and 952 is 17 .
Hence required number is 17 .
2 Marks

Downloaded from www.studiestoday.com

