QUADRATIC EQUATIONS

IMPORTANT CONCEPTS:-

TAKE A LOOK:

1. The general form of a quadratic equation is $a x^{2}+b x+c=0, a \neq 0 . a, b$ and c are real numbers.
2. A real number x is said to be a root of the quadratic equation $a x^{2}+b x+c=0$ where $a \neq 0$ if $a x^{2}+b x+c=0$. The zeroes of the quadratic equation polynomial $a x^{2}+b x+c=0$ and the roots of the corresponding quadratic equation $a x^{2}+b x+c=0$ are the same.
3. Discriminant:- The expression $b^{2}-4 a c$ is called discriminant of the equation $a x^{2}+b x+c=0$ and is usually denoted by D. Thus discriminant $D=b^{2}-4 a c$.
4. Every quadratic equation has two roots which may be real , co incident or imaginary.
5. If α and β are the roots of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ then

$$
\alpha=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { And } \beta=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

6. Sum of the roots, $\alpha+\beta=-\frac{b}{a}$ and product of the roots, $\alpha, \beta=\frac{c}{a}$
7. Forming quadratic equation, when the roots a and B are given.

$$
x^{2}-(\alpha+\beta) x+\alpha \cdot \beta=0
$$

8. Nature of roots of $a x^{2}+b x+c=0$
i. If $D^{>} 0$, then roots are real and unequal.
ii. $\quad D=0$, then the equation has equal and real roots.
iii. $\quad D<0$, then the equation has no real roots

LEVEL-I

1. IF $1 / 2$ is a root of the equation $x^{2}+k x-5 / 4=0$, then the value of K is
(a) 2
[Ans(d)]
(b) -2
(c) $1 / 4$
(d) $1 / 2$
2. IF $D>0$, then roots of a quadratic equation $a x^{2}+b x+c=0$ are
(a) $\frac{-b \pm \sqrt{D}}{2 a}$
(b) $\frac{1 b+\sqrt{D}}{2 a}$
(c) $\frac{1 b-\sqrt{D}}{2 a}$
(d) None of these
[Ans(a)]
3. Discriminant of $x^{2}+5 x+5=0$ is
(a) $5 / 2$
(b) -5
(c) 5
(d) -4
[Ans(c)]
4. The sum of roots of a quadratic equation $x^{2}+4 x-320=0$ is
[Ans(a)]
(a) -4
(b) 4
(c) $1 / 4$
(d) $1 / 2$
5. The product of roots of a quaradatic equation $2 x^{2}+7 x-4=0$ is
[Ans(d)]
(a)2/7
(b) $-2 / 7$
(c) $-4 / 7$
(d) -2
6. Values of K for which the equation $9 x^{2}+2 k x-1=0$ has real roots are:
[Ans(b)]
(a) ${ }_{\mathrm{k}} \geq \pm 3$
(b) $k \geq 3$ or $K \leq-3$
(c) $K^{\geq}-3$
(d) $k \leq \pm 3$

LEVEL-II

1. Find the roots of the quadratic equation $3 x^{2}-2 \sqrt{ } 6+2=0$

$$
\text { [Ans- } x=\frac{2 \sqrt{6}}{6}, \frac{2 \sqrt{6}}{6} \text {] }
$$

2. The sum of the squares of two consecutive odd number is 394 . Find the numbers.
[Ans- 13,15 or $-15,13$]
3. Find the root of $\mathbf{6} x^{2}+\sqrt{ } 2 x-2=0$ by factorization.

$$
\text { [Ans- } x=\frac{-\sqrt{2}}{3}, \frac{\sqrt{2}}{2} \text {] }
$$

4. The sum of two numbers is 8 . Determine the numbers if the sum of their reciprocals is $8 / 15$.
[Ans- 5 and 3 or 3 and 5]
5. For what value of k does $(k-12) x^{2}+2(k-12) x+2=0$ has equal roots?
[Ans- $k=14$]
6. Divide 51 into two parts whose product is 378 .
[Ans-942]

LEVEL-III

1. For what value of k, will the equation $2 x^{2}-2(1+2 k) x+(3+2 k)=0$ have real but distinct roots ? When will the roots be equal?

$$
\text { [Ans } k<-5 / 2 \text { or } k>V 5 / 2, k= \pm>V 5 / 2]
$$

2. Solve for $x: 4 \sqrt{ } 3 x^{2}+5 x-2 \sqrt{ } 3=0$.
[Ans V3/4,-2/V3]
3. Using quadratic formula solve the following quadratic equation for $\mathrm{x}: x^{2}-2 a x+\left(a^{2}-b^{2}\right)=0$ [Ans a+b,a-b]
4. The speed of a boat in still water is $11 \mathrm{~km} / \mathrm{hr}$. It can go 12 km up stream and return downstream to the original point in 2 hours 45 minutes. Find the speed of the stream.
[5 km/h]
5. Solve for $x: a^{2} b^{2} x^{2}+b^{2} x-a^{2} x-1=0$
[Ans $1 / b^{2},-1 / a^{2}$]
6. Solve the following quadratic equation for x :

$$
x^{2}-2(a+2) x+(a+1)(a+3)=0
$$

[Ans-a+1,a+3]

LEVEL-IV

1. Solve for $\frac{\mathbf{1}}{a+b-x}=\frac{\mathbf{1}}{b}+\frac{1}{b}+\frac{1}{x} ; \mathrm{a}^{\neq 0} 0, \mathrm{~b}^{\neq} 0 \mathrm{x}^{\neq 0} 0$
[Ans. -a,-b]
2. An aeroplane left 30 minutes later than its scheduled time and in order to reach its destination 1500 km away in time, it has to increase its speed by $250 \mathrm{~km} / \mathrm{hr}$ from its usual speed. Determine its usual speed.
[Ans $750 \mathrm{~km} / \mathrm{hr}$]
3. Using the quadratic formula solve the equation $a^{2} b^{2} x^{2}-\left(4 b^{4}-3 a^{4}\right) x-12 a^{2} b^{2}=0$

$$
\text { [Ans } \frac{3 \mathrm{a} 2}{b 2}, \frac{4 \mathrm{~b} 2}{a 2}
$$

4. Solve for $\mathrm{x}: \frac{\mathrm{x}-\mathbf{1}}{\bar{x}-\mathbf{2}}+\frac{\mathrm{x}-\mathbf{3}}{x-4}=3 \frac{\mathbf{1}}{\mathbf{3}}\left(\mathrm{x}^{\neq} 2,4\right)$
[Ans 5/2,5]
5. If (-5) is a root of the quadratic equation $2 x^{2}+p x-15=0$ and the quadratic equation $p\left(x^{2}+x\right)+k=0$ has equal roots then find the values of P and K.

> [Ans-24m, 8m]
6. The sum or the areas of two squares is $640 \mathrm{~m}^{2}$. If the difference of their perimeters is 64 m . Find the sides of the two squares.
[Ans24m,8m]

SELF EVALUATION

1. If the root of the equation $(b-c) x^{2}+(c-a) x+(a-b)=0$ are equal, then prove that $2 b=a+c$
2. Solve by using quadratic formula

$$
\left(x^{2}+3 x+2\right)^{2}-8\left(x^{2}+3 x\right)-4=0
$$

3. If α and β are the roots of the equation $\mathrm{lx}^{2}-\mathrm{mx}+\mathrm{n}=0$, Find the equation whose roots are α / β and $\mathrm{b} \beta / \alpha$.
4. The difference of two numbers in 5 and the difference of their reciprocal is $1 / 10$. Find the numbers.
