Chapter - 2

(Polynomials)
Key Concepts
Constants : A symbol having a fixed numerical value is called a constant.
Example: 7, 3, -2, 3/7, etc. are all constants.
Variables : A symbol which may be assigned different numerical values is known as variable.

$$
\begin{array}{rl}
\text { Example : } C=2 \pi r & \mathrm{C} \text { - circumference of circle } \\
& r \text { - radius of circle }
\end{array}
$$

Where $2 \& \pi$ are constants. while C and r are variable
Algebraic expressions : A combination of constants and variables. Connected by some or all of the operations,,+- X and \div is known as algebraic expression.

Example: $4+9 x-5 x^{2} y+\frac{3}{8} x y$ etc.
Terms : The several parts of an algebraic expression separated by ' + ' or '-' operations are called the terms of the expression.

Example : $x^{3}+2 x^{2} y+4 x y^{2}+y^{3}+7$ is an algebraic expression containing 5 terms $x^{3}, 2 x^{3} y,-4 x y^{2}, y^{3} \& 7$

Polynomials : An algebraic expression in which the variables involved have only nonnegative integral powers is called a polynomial.
(i) $5 x^{3}-4 x^{2}-6 x-3$ is a polynomial in variable x .
(ii) $5+8 x^{3 / 2}+4 x^{-2}$ is an expression but not a polynomial.

Polynomials are denoted by $p(x), q(x)$ and $r(x)$ etc.
Coefficients : In the polynomial $x^{3}+3 x^{2}+3 x+1$, coefficient of x^{3}, x^{2}, x are $1,3,3$ respectively and we also say that +1 is the constant term in it.

Degree of a polynomial in one variable: In case of a polynomial in one variable the highest power of the variable is called the degree of the polynomial.

Classification of polynomials on the basis of degree.

	degree	Polynomial	Example
(a)	1	Linear	$x+1,2 x+3$ etc.
(b)	2	Quadratic	$a x^{2}+b x+c$ etc.
(c)	3	Cubic	$x^{3}-3 x^{2}+1$ etc.
(d) 4	Biquadratic	$x^{4}-1$	

Classification of polynomials on the basis of no. of terms

No. of terms
(i)
(ii)
(iii)

1
2

3

Polynomial \& Examples.
Monomial - 5, $3 x, \frac{1}{3} y$ etc.
Binomial - $(3+6 x),(x-5 y)$ etc.
Trinomial- $2 x^{2}+4 x+2$ etc.

Constant polynomial : A polynomial containing one term only, consisting a constant term is called a constant polynomial the degree of non-zero constant polynomial is zero.

Zero polynomial : A polynomial consisting of one term, namely zero only is called a zero polynomial.

The degree of zero polynomial is not defined.
Zeroes of a polynomial : Let $p(x)$ be a polynomial. If $p(\alpha)=0$, then we say that α is a zero of the polynomial of $p(x)$.

Remark : Finding the zeroes of polynomial $p(x)$ means solving the equation $p(x)=0$.
Remainder theorem : Let $f(x)$ be a polynomial of degree $n \geq 1$ and let a be any real number. When $f(x)$ is divided by $(x-a)$ then the remainder is $f(a)$

Factor theorem : Let $f(x)$ be a polynomial of degree $n>1$ and let a be any real number.
(i) If $f(a)=0$ then $(x-a)$ is factor of $f(x)$
(ii) If $(x-a)$ is a factor of $f(x)$ then $f(a)=0$

Factor : A polynomial $p(x)$ is called factor of $q(x)$, if $p(x)$ divides $q(x)$ exactly.

Factorization : To express a given polynomial as the product of polynomials each of degree less than that of the given polynomial such that no such a factor has a factor of lower degree, is called factorization.

$$
\text { Example : } x^{2}-16=(x+4)(x-4)
$$

Methods of Factorization :

Factorization by taking out the common factor
e.g.

$$
36 q^{3} b-60 a^{2} b c=12 a^{2} b(3 a-5 c)
$$

Factorizing by grouping

$$
\begin{aligned}
a b+b c+a x+c x & =(a b+b c)+(a x+c x) \\
& =b(a+c)+x(a+c) \\
& =(a+c)(b+x)
\end{aligned}
$$

Factorization of quadratic trinomials by middle term splitting method.

$$
\begin{aligned}
x^{2}+b c+c & =x^{2}+(p+q) x+p q \\
& =(x+p)(x+q)
\end{aligned}
$$

Identity : Identity is a equation (trigonometric, algebraic) which is true for every value of variable.

Some algebraic identities useful in factorization:
(i) $(x+y)^{2}=x^{2}+2 x y+y^{2}$
(ii) $(x-y)^{2}=x^{2}-2 x y+y^{2}$
(iii) $x^{2}-y^{2}=(x-y)(x+y)$
(iv) $(x+a)(x+b)=x^{2}+(a+b) x+a b$
(v) $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
(vi) $\quad(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
(vii) $\quad(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
(viii) $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$x^{3}+y^{3}+z^{3}=3 x y z \quad$ if $x+y+z=0$

Section - A

Q. 1 Which of the following expressions is polynomial?
(i) $x^{5}-2 x^{3}+x+7$
(ii) $y^{3}-\sqrt{3} y$
(iii) $5 \sqrt{z}-6$
(iv) $x-\frac{1}{x}$
(v) $x^{108}-1$
(vi) $\sqrt[3]{x}-27$
(vii) $x^{-2}+2 x^{-1}+3$
Q. 2 Write the degree of each of the following polynomial.
(i) $2 x-\sqrt{5}$
(ii) $3-x+x^{2}-6 x^{3}$
(iii) 9
(iv) $8 x^{4}-36 x+5 x^{7}$
(v) $x^{9}-x^{5}+3 x^{10}+8$
(vi) $2-3 x^{2}$
Q. 3 (i) Give an example of a binomial of degree 27.
(ii) Give an example of a monomial of degree 16.
(iii) Give an example of trinomial of degree 3.

Section - B

Q. 4 If $p(x)=5-4 x+2 x^{2}$ find (i) $p(0)$ (ii) $p(3)$ (iii) $p(-2)$
Q. 5 Find the zeros of the polynomials given below :
(i) $p(x)=x-5$
(ii) $q(x)=x+4$
(iii) $h(x)=6 x-1$
(iv) $p(x)=a x+b$
(v) $r(x)=x^{2}+3 x$
(vi) $l(x)=x^{2}+2 x+1$
Q. 6 Find the remainder when $f(x)=12 x^{3}-13 x^{2}-5 x+7$ is divided by $(3 x+2)$?
Q. 7 Show that $(x+5)$ is a factor of the polynomial
$f(x)=x^{3}+x^{2}+3 x+115$
Q. 8 Find the value of a for which $(x-a)$ is a factor of the polynomial.
$f(x)=x^{5}-a^{2} x^{3}+2 x+a-3$

Section - C

Q. 9 Factorize the following expressions.
(i) $5 x^{2}-20 x y$
(ii) $5 a(b+c)-7 b(b+c)$
(iii) $x(x-y)^{2}+3 x^{2} y(x-y)$
(iv) $6 a b-b^{2}+12 a c-2 b c$
(v) $x^{2}+\frac{1}{x^{2}}+2-2 x-\frac{2}{x}$
Q. 10 Factorize:
(i) $9 x^{2}-16 y^{2}$
(ii) $x^{3}-x$
Q. 11 Factorize:
$a(a-1)-b(b-1)$
Q. 12 Factorize following expressions.
(i) $x^{2}+9 x+18$
(ii) $x^{2}-4 x-21$
(iii) $x^{2}-9 x+18$
(iv) $x^{2}-19 x+78$
Q. 13 Calculate (997) ${ }^{2}$ using algebraic identities.
Q. 14 Calculate 103×107 using algebraic identities.
Q. 15 Expand $(2 a+3 b+4 c)^{2}$.
Q. 16 Factorize $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.
Q. 17 Expand (i) $(4 a+5 b)^{3}$
(ii) $(5 x-3 y)^{3}$
Q. 18 Evaluate (i) (95) ${ }^{3}$
(ii) $(106)^{3}$
Q. 19 Factorize
(i) $x^{3}+64$
(ii) $27 x^{3}+125 y^{3}$
(iii) $8 a^{3}-27 b^{3}$
(iv) $1-64 a^{3}$

Section - D

Q. 20 Factorize

$$
a^{3}+27 b^{3}+8 c^{3}-18 a b c
$$

Q. 21 Factorize

$$
(p-q)^{3}+(q-r)^{3}+(r-p)^{3}
$$

Q. 22 Find the product

$$
(3 x-5 y-4)\left(9 x^{2}+25 y^{2}+15 x y+12 x-20 y+16\right)
$$

Q. 23 If If $x+y+z=9$ and $x y+y z+z x=23$ then find the value of $\left(x^{3}+y^{3}+z^{3}-3 x y z\right) ?$

Self Evaluation

Q. 24 Which of the following expression is a polynomial?
(a) $\sqrt{x}-1$
(b) $\frac{x-1}{x+1}$
(c) $x^{2}-\frac{2}{x^{2}}+5$
(d) $x^{2}+\frac{2 x^{3 / 2}}{\sqrt{x}}+6$
Q. 25 Degree of zero polynomial is
(a) 1
(b) 0
(c) not defined
(d) none of these
Q. 26 For what value of k is the polynomial $p(x)=2 x^{3}-k x^{2}+3 x+10$ exactly divisible by $(x+2)$?
(a) $\frac{-1}{3}$
(b) $\frac{1}{3}$
(c) 3
(d) -3
Q. 27 The zeroes of the polynomial $p(x)=3 x^{2}-1$ are
(a) $\frac{1}{3}$
(b) $\frac{1}{\sqrt{3}}$
(C) $\frac{-1}{\sqrt{3}}$
(d) $\frac{1}{\sqrt{3}}$ and $\frac{-1}{\sqrt{3}}$
Q. 28 If $\frac{x}{y}+\frac{y}{x}=-1$ where $x \neq 0, y \neq 0$ then find the value of $x^{3}-y^{3}$.
Q. 29 If $(x+2)$ and $(x-1)$ are factors of $\left(x^{3}+10 x^{2}+m x+n\right)$ then find value of m \& n ?
Q. 30 Find the value of $(369)^{2}-(368)^{2}$
Q. 31 Find value of 104×96
Q. 32 If $a+b+c=0$ find value of $\left(\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}\right)$?

Answers

Q. 1 (i), (ii), (v)
Q. 2
(i) 1
(ii) 3
(iii) 0
(iv) 4
(v) 9
(vi) 2
Q. 4
(i) $\mathrm{p}(0)=5$
(ii) $\mathrm{p}(3)=11$
(iv) 21
Q. 5
(i) $x=5$
(ii) $x=-4$
(iii) $\mathrm{x}=1 / 6$
(iv) $x=-b / a$
(v) $x=0, x=-3$
(vi) $x=-1,-1$
Q. 6 remainder $=1$
Q. $8 \quad a=1$
Q. 9 (i) $5 x(x-4 y)$
(ii) $(b+c)(5 a-7 b)$
(iii) $x(x-y)[(x-y)+3 x y]$
(iv) $(b+2 c)(6 a-b)$
(v) $\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}-2\right)$
Q. 10 (i) $(3 x+4 y)(3 x-4 y)$
(ii) $x(x+1)(x-1)$
Q. 11 ($\mathrm{a}-\mathrm{b}$) $(\mathrm{a}+\mathrm{b}-1)$
Q. 12 (i) $(x+6)(x+3)$
(ii) $(x-7)(x+3)$
(iii) $(x-6)(x-3)$
(iv) $(x-6)(x-13)$
Q. 13994009
Q. 1411021
Q. $154 a^{2}+9 b^{2}+16 c^{2}+12 a b+24 b c+16 a c$
Q. $16(2 x-y+z)^{2}$
Q. 17 (i) $64 a^{3}+125 b^{3}+240 a^{2} b+300 a b^{2}$
(ii) $125 x^{3}-27 y^{3}-225 x^{2} y+135 x y^{2}$
Q. 18
(i) 857375
(ii) 1191016
Q. 19
(i) $(x+4)\left(x^{2}-4 x+16\right)$
(ii) $(3 \mathrm{x}+5 \mathrm{y})\left(9 \mathrm{x}^{2}-15 \mathrm{xy}+25 \mathrm{y}^{2}\right.$
(iii) $(2 a-3 b)\left(4 a^{2}+6 a b+9 b^{2}\right)$
(iv) $(1-4 a)\left(1+4 a+16 a^{2}\right)$
Q. $20(a+3 b+2 c)\left(a^{2}+9 b^{2}+4 c^{2}-3 a b-6 b c-2 a c\right)$
Q. $213(p-q)(q-r)(r-p)$
Q. $2227 x^{3}-125 y^{3}-64-180 x y$.
Q. 23108
Q. 24 (d) $x^{2}+\frac{2 x^{\frac{3}{2}}}{x^{\frac{1}{2}}}+6$
Q. 25 (c) not defined
Q. 26 (d) -3
Q. 27 (d) $\frac{1}{\sqrt{3}} \& \frac{-1}{\sqrt{3}}$
Q. $28 \quad 0$
Q. $29 m=7, n=-18$
Q. $30 \quad 737$
Q. 319984
Q. 323

