CHAPTER 2

POLYNOMIALS

KEY POINTS

- 1. Polynomials of degrees 1, 2 and 3 are called linear, quadratic and cubic polynomials respectively.
- 2. A quadratic polynomial in x with real coefficient is of the form $ax^2 + bx + c$, where a, b, c are real number with $a \ne 0$.
- 3. The zeroes of a polynomial p(x) are precisely the x-coordinates of the points where the graph of y = p(x) intersects the x-axis i.e. x = a is a zero of polynomial p(x) if p(a) = 0.
- 4. A polynomial can have at most the same number of zeros as the degree of polynomial.
- 5. For quadratic polynomial $ax^2 + bx + c$ (a \neq 0)

Sum of zeros =
$$-\frac{b}{a}$$

Product of zeros =
$$\frac{c}{a}$$
.

6. The division algorithm states that given any polynomial p(x) and polynomial g(x), there are polynomials q(x) and r(x) such that :

$$p(x) = g(x).q(x) + r(x), g(x) \neq 0$$

where r(x) = 0 or degree of r(x) <degree of g(x).

MULTIPLE CHOICE QUESTIONS

- 1. A real no. α is a zero of the polynomial f(x) if
 - (a) $f(\alpha) > 0$

(b) $f(\alpha) = 0$

(c) $f(\alpha) < 0$

(d) none

2.	The zeros of a polynomial $f(x)$ are the coordinates of the points where the graph of $y = f(x)$ intersects		
	(a) x-axis	(b)	<i>y</i> -axis
	(c) origin	(d)	(x, y)
3.	If β is 0 zero of $f(x)$ then is one of the factors of $f(x)$		
	(a) $(x - \beta)$	(b)	$(x-2\beta)$
	(c) $(x + \beta)$	(d)	$(2x - \beta)$
4.	If $(y - a)$ is factor of $f(y)$ then is a zero of $f(y)$		
	(a) <i>y</i>	(b)	а
	(c) 2 <i>a</i>	(d)	2 <i>y</i>
5.	Which of the following is not correct for : have	A quad	ratic polynomial may
	(a) no real zeros	(b)	two equal real zeros
	(c) two distinct zeros	(d)	three real zeros.
6.	Cubic poly $x = f(y)$ cuts y-axis at almost		
	(a) one point	(b)	two points
	(c) three points	(d)	four points
7.	Polynomial $x^2 + 1$ has zeros		
	(a) only one real	(b)	no real
	(c) only two real	(d)	one real and the other non-real.
8.	If α , β are the zeros of the polynomials	f (x)	$= x^2 + x + 1$ then
	$\frac{1}{\alpha} + \frac{1}{\beta} = \underline{\hspace{1cm}}$		
	(a) 1	(b)	-1
	(c) 0	(d)	none

9. If one of the zero of the polynomial $g(x) = (k^2 + 4) x^2 + 13x + 4k$ is reciprocal of the other then k =___

(b)
$$-2$$

(d)
$$-1$$

10. If 2 is a zero of both the polynomial, $3x^2 + ax - 14$ and 2x - b then a - 2b =___

(a)
$$-2$$

(c)
$$-8$$

(d)
$$-7$$

11. If zeros of the polynomial $ax^2 + bx + c$ are reciprocal of each other then

(a)
$$a = c$$

(b)
$$a = b$$

(c)
$$b = c$$

(d)
$$a = -c$$

12. The zeros of the polynomial $h(x) = (x - 5)(x^2 - x - 6)$ are

(a)
$$-2$$
, 3, 5

(b)
$$-2$$
, -3 , -5

(c)
$$2, -3, -5$$

13. Graph of $y = ax^2 + bx + c$ intersects x-axis at 2 distinct points if

(a)
$$b^2 - 4ac > 0$$

(b)
$$b^2 - 4ac < 0$$

(c)
$$b^2 - 4ac = 0$$

SHORT ANSWER TYPE QUESTIONS

- 14. If α and β are the zeros of the polynomial $2x^2 7x + 3$. Find the sum of the reciprocal of its zeros.
- 15. If α , β are the zeros of the polynomial $p(x) = x^2 a(x + 1) b$ such that $(\alpha + 1)(\beta + 1) = 0$ then find value of b.
- 16. If α , β are the zeros of the polynomial x^2 (k + 6) x + 2 (2k 1). Find k if $\alpha + \beta = \frac{1}{2}\alpha\beta$.
- 17. If (x + p) is a factor of the polynomial $2x^2 + 2px + 5x + 10$ find p.
- 18. Find a quadratic polynomial whose zeroes are $(5 3\sqrt{2})$ and $(5 + 3\sqrt{2})$.

- 19. If $\frac{1}{5}$ and -2 are respectively product and sum of the zeroes of a quadratic polynomial. Find the polynomial.
- 20. Find zeroes of $\sqrt{3}x^2 8x + 4\sqrt{3}$.
- 21. If (x + k) is a factor of the polynomial $x^2-2x-15$ and $x^3 + a$. Find k and a.
- 22. Form a quadratic polynomial, one of whose zero is $(2 + \sqrt{5})$ and the sum of zeros is 4.
- 23. If sum of the zeroes of $kx^2 + 3k + 2x$ is equal to their product. Find k.
- 24. If one zero of $4x^2 9 8kx$ is negative of the other find k.

LONG ANSWER TYPE QUESTIONS

- 25. Find the zeroes of $6x^2 3 7x$. Verify the relationship between the zeros and coefficients.
- 26. If one zero of he polynomial $(a^2 + a) x^2 + 13x + 6a$ is reciprocal of the other, find value (s) of a.
- 27. -5 is one of the zeroes of $2x^2 + px 15$. Quadratic polynomial $p(x^2 + x) + k$ has both the zeros equal to each other. Then find k.
- 28. Find the value of k such that $3x^2 + 2kx + x k 5$ has the sum of the zeros as half of their product.
- 29. If $f(x) = 2x^4 5x^3 + x^2 + 3x 2$ is divided by g(x) the quotient is $q(x) = 2x^2 5x + 3$ and r(x) = -2x + 1 find g(x).
- 30. If (x-2) is one of the factors of $x^3 3x^2 4x + 12$ find the other zeros.
- 31. If α and β are the zeros of he polynomial $x^2 5x + k$ such that $\alpha \beta = 1$, find the value of k.
- 32. If α , β are zeros of quadratic polynomial $2x^2 + 5x + k$, find the value of k, such that $(\alpha + \beta)^2 \alpha\beta = 24$.
- 33. Obtain all zeros of $x^4 x^3 7x^2 + x + 6$ if 3 and 1 are zeros.
- 34. Find all the zeros of the polynomial $4x^4 20x^3 + 23x^2 + 5x 6$ if two of its zeros are 2 and 3.

12 X – Maths

- 35. If $(2 + \sqrt{3})$ and $(2 \sqrt{3})$ are two zeroes of $x^4 4x^3 8x^2 + 36x 9$ find the other two zeroes.
- 36. What must be subtracted from $8x^4 + 14x^3 4x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x 2$.
- 37. When we add p(x) to $4x^4 + 2x^3 2x^2 + x 1$ the resulting polynomial is divisible by $x^2 + 2x 3$ find p(x).
- 38. Find a and f if $(x^4 + x^3 + 8x^2 + ax + f)$ is a multiple of $(x^2 + 1)$.
- 39. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by $3x^2 + 1 + 4x$ then r(x) = (ax + b) find a and b.
- 40. Obtain all the zeroes of $2x^4 2x^3 7x^2 + 3x + 6$ if $\left(x \pm \sqrt{\frac{3}{2}}\right)$ are two factors of this polynomial.
- 41. Find all the zeroes of $x^4 3x^3 x^2 + 9x 6$ if $-\sqrt{3}$ and $\sqrt{3}$ are two of its zeros.
- 42. If $(x^3 3x + 1)$ is one of the factors of the polynomial $x^5 4x^3 + x^2 + 3x + 1$, find the other two factors.
- 43. What does the graph of the polynomial $ax^2 + bx + c$ represents. What type of graph will it represent (i) for a > 0, (ii) for a < 0. What happens if a = 0.

ANSWERS

1. *b*

2. a

3. a

4. *b*

5. a

6. c

7. b

8. b

9. a

10. *d*

11. a

12. a

14.
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{7}{3}$$

16.
$$k = 7$$

17.
$$p = 2$$

18.
$$x^2 - 10x + 7$$

19.
$$x^2 + 2x + \frac{1}{5}$$

20.
$$2\sqrt{3}, \frac{2}{3}\sqrt{3}$$

21.
$$k = -5$$
, 3 and $a = -125 + 27$ 22. $x^2 - 4x - 1$

23.
$$-\frac{2}{3}$$

25.
$$-\frac{1}{3}, \frac{3}{2}$$

27.
$$p = 7, k = \frac{7}{4}$$

28.
$$k = 1$$

29.
$$g(x) = x^2 - 1$$

31.
$$k = 6$$

32.
$$k = 2$$

34.
$$-\frac{1}{2}$$
, $+\frac{1}{2}$

36.
$$14x - 10$$

37.
$$61x + 65$$

38.
$$r(x) = 0$$

$$\Rightarrow (a-1)x + (f-7) = 0$$

$$\Rightarrow a = 1 \text{ and } f = 7$$

39.
$$r(x) = x + 2 = ax + f \Rightarrow a = 1 \text{ and } f = 2$$
 40. $2, -1 \pm \sqrt{\frac{3}{2}}$

41.
$$\pm \sqrt{3}$$
, 1, 2

42.
$$(x-1)$$
, $(x+1)$

43. A curve (parabola) upward parabola, downward parabola, straight line.