Downloaded from www.studiestoday.com

CHAPTER 2

POLYNOMIALS

KEY POINTS

1. Polynomials of degrees 1,2 and 3 are called linear, quadratic and cubic polynomials respectively.
2. A quadratic polynomial in x with real coefficient is of the form $a x^{2}+b x+c$, where a, b, c are real number with $a \neq 0$.
3. The zeroes of a polynomial $p(x)$ are precisely the x-coordinates of the points where the graph of $y=p(x)$ intersects the x-axis i.e. $x=a$ is a zero of polynomial $p(x)$ if $p(a)=0$.
4. A polynomial can have at most the same number of zeros as the degree of polynomial.
5. For quadratic polynomial $a x^{2}+b x+c(a \neq 0)$

Sum of zeros $=-\frac{b}{a}$
Product of zeros $=\frac{c}{a}$.
6. The division algorithm states that given any polynomial $p(x)$ and polynomial $g(x)$, there are polynomials $q(x)$ and $r(x)$ such that:

$$
p(x)=g(x) \cdot q(x)+r(x), g(x) \neq 0
$$

where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$.

MULTIPLE CHOICE QUESTIONS

1. A real no. α is a zero of the polynomial $f(x)$ if
(a) $f(\alpha)>0$
(b) $f(\alpha)=0$
(c) $f(\alpha)<0$
(d) none

Downloaded from www.studiestoday.com

2. The zeros of a polynomial $f(x)$ are the coordinates of the points where the graph of $y=f(x)$ intersects
(a) x-axis
(b) y-axis
(c) origin
(d) (x, y)
3. If β is 0 zero of $f(x)$ then \qquad is one of the factors of $f(x)$
(a) $(x-\beta)$
(b) $(x-2 \beta)$
(c) $(x+\beta)$
(d) $(2 x-\beta)$
4. If $(y-a)$ is factor of $f(y)$ then \qquad is a zero of $f(y)$
(a) y
(b) a
(c) $2 a$
(d) $2 y$
5. Which of the following is not correct for : A quadratic polynomial may have
(a) no real zeros
(b) two equal real zeros
(c) two distinct zeros
(d) three real zeros.
6. Cubic poly $x=f(y)$ cuts y-axis at almost
(a) one point
(b) two points
(c) three points
(d) four points
7. Polynomial $x^{2}+1$ has ___ zeros
(a) only one real
(b) no real
(c) only two real
(d) one real and the other non-real.
8. If α, β are the zeros of the polynomials $f(x)=x^{2}+x+1$ then $\frac{1}{\alpha}+\frac{1}{\beta}=$ \qquad
(a) 1
(b) -1
(c) 0
(d) none

Downloaded from www.studiestoday.com

9. If one of the zero of the polynomial $g(x)=\left(k^{2}+4\right) x^{2}+13 x+4 k$ is reciprocal of the other then $k=$ \qquad
(a) 2
(b) -2
(c) 1
(d) -1
10. If 2 is a zero of both the polynomial, $3 x^{2}+a x-14$ and $2 x-b$ then $a-2 b=$ \qquad
(a) -2
(b) 7
(c) -8
(d) $\quad-7$
11. If zeros of the polynomial $a x^{2}+b x+c$ are reciprocal of each other then
(a) $a=c$
(b) $a=b$
(c) $b=c$
(d) $a=-c$
12. The zeros of the polynomial $h(x)=(x-5)\left(x^{2}-x-6\right)$ are
(a) $-2,3,5$
(b) $-2,-3,-5$
(c) $2,-3,-5$
(d) $2,3,5$
13. Graph of $y=a x^{2}+b x+c$ intersects x-axis at 2 distinct points if
(a) $b^{2}-4 a c>0$
(b) $b^{2}-4 a c<0$
(c) $b^{2}-4 a c=0$
(d) none

SHORT ANSWER TYPE QUESTIONS

14. If α and β are the zeros of the polynomial $2 x^{2}-7 x+3$. Find the sum of the reciprocal of its zeros.
15. If α, β are the zeros of the polynomial $p(x)=x^{2}-a(x+1)-b$ such that $(\alpha+1)(\beta+1)=0$ then find value of b.
16. If α, β are the zeros of the polynomial $x^{2}-(k+6) x+2(2 k-1)$. Find k if $\alpha+\beta=\frac{1}{2} \alpha \beta$.
17. If $(x+p)$ is a factor of the polynomial $2 x^{2}+2 p x+5 x+10$ find p.
18. Find a quadratic polynomial whose zeroes are $(5-3 \sqrt{2})$ and $(5+3 \sqrt{2})$.

Downloaded from www.studiestoday.com

19. If $\frac{1}{5}$ and -2 are respectively product and sum of the zeroes of a quadratic polynomial. Find the polynomial.
20. Find zeroes of $\sqrt{3} x^{2}-8 x+4 \sqrt{3}$.
21. If $(x+k)$ is a factor of the polynomial $x^{2}-2 x-15$ and $x^{3}+a$. Find k and a.
22. Form a quadratic polynomial, one of whose zero is $(2+\sqrt{5})$ and the sum of zeros is 4 .
23. If sum of the zeroes of $k x^{2}+3 k+2 x$ is equal to their product. Find k.
24. If one zero of $4 x^{2}-9-8 k x$ is negative of the other find k.

LONG ANSWER TYPE QUESTIONS

25. Find the zeroes of $6 x^{2}-3-7 x$. Verify the relationship between the zeros and coefficients.
26. If one zero of he polynomial $\left(a^{2}+a\right) x^{2}+13 x+6 a$ is reciprocal of the other, find value (s) of a.
27. -5 is one of the zeroes of $2 x^{2}+p x-15$. Quadratic polynomial $p\left(x^{2}+x\right)+k$ has both the zeros equal to each other. Then find k.
28. Find the value of k such that $3 x^{2}+2 k x+x-k-5$ has the sum of the zeros as half of their product.
29. If $f(x)=2 x^{4}-5 x^{3}+x^{2}+3 x-2$ is divided by $g(x)$ the quotient is $q(x)=2 x^{2}-5 x+3$ and $r(x)=-2 x+1$ find $g(x)$.
30. If $(x-2)$ is one of the factors of $x^{3}-3 x^{2}-4 x+12$ find the other zeros.
31. If α and β are the zeros of he polynomial $x^{2}-5 x+k$ such that $\alpha-\beta=$ 1 , find the value of k.
32. If α, β are zeros of quadratic polynomial $2 x^{2}+5 x+k$, find the value of k, such that $(\alpha+\beta)^{2}-\alpha \beta=24$.
33. Obtain all zeros of $x^{4}-x^{3}-7 x^{2}+x+6$ if 3 and 1 are zeros.
34. Find all the zeros of the polynomial $4 x^{4}-20 x^{3}+23 x^{2}+5 x-6$ if two of its zeros are 2 and 3 .

Downloaded from www.studiestoday.com

35. If $(2+\sqrt{3})$ and $(2-\sqrt{3})$ are two zeroes of $x^{4}-4 x^{3}-8 x^{2}+36 x-9$ find the other two zeroes.
36. What must be subtracted from $8 x^{4}+14 x^{3}-4 x^{2}+7 x-8$ so that the resulting polynomial is exactly divisible by $4 x^{2}+3 x-2$.
37. When we add $p(x)$ to $4 x^{4}+2 x^{3}-2 x^{2}+x-1$ the resulting polynomial is divisible by $x^{2}+2 x-3$ find $p(x)$.
38. Find a and f if $\left(x^{4}+x^{3}+8 x^{2}+a x+f\right)$ is a multiple of $\left(x^{2}+1\right)$.
39. If the polynomial $6 x^{4}+8 x^{3}+17 x^{2}+21 x+7$ is divided by $3 x^{2}+1+4 x$ then $r(x)=(a x+b)$ find a and b.
40. Obtain all the zeroes of $2 x^{4}-2 x^{3}-7 x^{2}+3 x+6$ if $\left(x \pm \sqrt{\frac{3}{2}}\right)$ are two factors of this polynomial.
41. Find all the zeroes of $x^{4}-3 x^{3}-x^{2}+9 x-6$ if $-\sqrt{3}$ and $\sqrt{3}$ are two of its zeros.
42. If $\left(x^{3}-3 x+1\right)$ is one of the factors of the polynomial $x^{5}-4 x^{3}+x^{2}+3 x$ +1 , find the other two factors.
43. What does the graph of the polynomial $a x^{2}+b x+c$ represents. What type of graph will it represent (i) for $\mathrm{a}>0$, (i) for $\mathrm{a}<0$. What happens if $a=0$.

ANSWERS

1.	b	2.	a
3.	a	4.	b
5.	a	6.	c
7.	b	8.	b
9.	a	10.	d
11.	a	12.	a

Downloaded from www.studiestoday.com

13. a
14. $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{7}{3}$
15. 1
16. $k=7$
17. $p=2$
18. $x^{2}-10 x+7$
19. $x^{2}+2 x+\frac{1}{5}$
20. $2 \sqrt{3}, \frac{2}{3} \sqrt{3}$
21. $k=-5,3$ and $a=-125+27$
22. $x^{2}-4 x-1$
23. $-\frac{2}{3}$
24. 0
25. $-\frac{1}{3}, \frac{3}{2}$
26. 5
27. $p=7, k=\frac{7}{4}$
28. $k=1$
29. $g(x)=x^{2}-1$
30. $-2,3$
31. $k=6$
32. $k=2$
33. $-2,-1$
34. $-\frac{1}{2},+\frac{1}{2}$
35. ± 3
36. $14 x-10$
37. $61 x+65$
38. $r(x)=0$

$$
\begin{aligned}
& \Rightarrow(a-1) x+(f-7)=0 \\
& \Rightarrow a=1 \text { and } f=7
\end{aligned}
$$

39. $r(x)=x+2=a x+f \Rightarrow a=1$ and $f=2 \quad$ 40. $\quad 2,-1 \pm \sqrt{\frac{3}{2}}$
40. $\pm \sqrt{3}, 1,2$
41. $(x-1),(x+1)$
42. A curve (parabola) upward parabola, downward parabola, straight line.
