Downloaded from www.studiestoday.com

- 5. Prove that $\sqrt{2}$ is not a rational number.
- 6. Find the largest positive integer that will divide 122, 150 and 115 leaving remainder 5, 7 and 11 respectively.
- 7. Show that there is no positive integer n for which $\sqrt{n-1} + \sqrt{n+1}$ is rational.
- 8. Using prime factorization method, find the HCF and LCM of 72, 126 and 168. Also show that $HCF \ X \ LCM \neq product \ of \ the \ three \ numbers.$

2. Polynomials (Key Points)

Polynomial:

An expression of the form $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ where $a_n \neq 0$ is called a polynomial in variable x of degree n. where; $a_0, a_1, ---- a_n$ are real numbers and each power of x is a non negative integer. Ex.:- $2x^2 - 5x + 1$ is a polynomial of degree 2.

Note: $\sqrt{x} + 3$ is not a polynomial.

- A polynomial p(x) = ax + b of degree 1 is called a linear polynomial. Ex. 5x 3, 2x etc
- A polynomial $p(x) = ax^2 + bx + c$ of degree 2 is called a quadratic polynomial. Ex. $2x^2 + x c$ 1, $1 - 5x + x^2$ etc.
- A polynomial $p(x) = ax^3 + bx^2 + cx + d$ of degree 3 is called a cubic polynomial. Ex. $\sqrt{3}x^3 - x + \sqrt{5}$. $x^3 - 1$ etc.

Zeroes of a polynomial: A real number k is called a zero of polynomial p(x)if p(x) = 0. The graph of y = p(x) intersects the X- axis.

- A linear polynomial has only one zero.
- A Quadratic polynomial has two zeroes.
- A Cubic polynomial has three zeroes.

For a quadratic polynomial: If α , β are zeroes of $P(x) = ax^2 + bx + c$ then :

- 1. Sum of zeroes = $\alpha + \beta = \frac{-b}{a} = \frac{-Coefficient\ of\ x}{coefficient\ of\ x^2}$ 2. Product of zeroes = α . $\beta = \frac{c}{a} = \frac{Constant\ term}{coefficient\ of\ x^2}$
- A quadratic polynomial whose zeroes are α and β , is given by:

$$p(x) = x^{2} - (\alpha + \beta)x + \alpha\beta$$

$$= x^{2} - (sum \ of \ zeroes)x + product \ of \ zeroes.$$

If α , β and γ are zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ then:

$$*\alpha + \beta + \gamma = \frac{-b}{a}$$

$$*\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

$$*\alpha\beta\gamma = \frac{-d}{a}$$

Division algorithm for polynomials: If p(x) and g(x) are any two polynomials with $g(x) \neq 0$, then we

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

p(x) = q(x)X g(x) + r(x), where r(x) = 0 or degree of r(x) < degree of g(x).

(Level - 1)

1. In a graph of y = p(x), find the number of zeroes of p(x).

Ans. 3.

3. Find a quadratic polynomial whose zeroes are $\frac{-2}{\sqrt{3}}$ and $\frac{\sqrt{3}}{4}$.

Ans.
$$x^2 - \left(\frac{-2}{\sqrt{3}} + \frac{\sqrt{3}}{4}\right)x + \left(-\frac{1}{2}\right)$$

4. If $p(x) = \frac{1}{3}x^2 - 5x + \frac{3}{2}$ then find its sum and product of zeroes.

Ans. Sum=15, Product = $\frac{9}{2}$

5. If the sum of zeroes of a given polynomial $f(x) = x^3 - 3kx^2 - x + 30$ is 6. Find the value of K.

Ans.
$$\alpha + \beta + \gamma = \frac{-b}{a} = \frac{3k}{1} = 6$$

6. Find the zero of polynomial 3x + 4.

Ans. -4/3

7. Write the degree of zero polynomial.

Ans. Not defined.

(Level - 2)

1. Form a cubic polynomial with zeroes 3, 2 and -1.

Hints/Ans.
$$p(x) = x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$$

2. Find the zeroes of the quadratic polynomial $6x^2 - 3 - 7x$ and verify the relationship between the zeroes and the coefficients.

Ans. Zeroes are 3/2 & -1/3.

3. For what value of k, (-4) is a zero of polynomial $x^2 - x - (2k + 2)$?

Ans. k=9

4. Give an example of polynomials

p(x), g(x), q(x) and r(x) which satisfy division algorithm and deg. p(x) = deg. g(x).

Ans. $3x^2 + 2x + 1$, x^2 , 3, 2x + 1

5. Find the zeroes of $4u^2 + 8u$.

Ans. 0, -2

6. Find a quadratic polynomial, whose the sum and product of its zeroes are $\frac{1}{4}$, -1.

Ans.
$$x^2 - \frac{1}{4}x - 1$$

(Level - 3)

1. Find the zeroes of polynomial $x^3 - 2x^2 - x + 2$

Ans. -1, 1, 2

2. If the zeroes of the polynomial x^3-3x^2+x+1 are $\alpha-\beta$, α , $\alpha+\beta$. Find α and β

Ans. $\alpha = 1$, $\beta = \pm \sqrt{2}$

3. Divide $f(x) = 6x^3 + 11x^2 - 39x - 65$ by $g(x) = x^2 - 1 + x$

Ans. Quotient=
$$6x + 5$$
; Remainder = $-38x - 60$

4. Check whether the polynomial t^2-3 is a factor of polynomial $2t^4+3t^3-2t^2-9t-12$ by applying the division algorithm.

Ans. Remainder=0, Quotient=2t² + 3t + 4, Given Polynomial is a factor.

Downloaded from www.studiestoday.com

1. Obtain all zeroes of $f(x) = x^3 + 13x^2 + 32x + 20$

- Ans. -1, -2, -10
- 2. Obtain all other zeroes of $3x^4 + 6x^3 2x^2 10x 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ Ans. -1 & -1
- 3. On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x 2 and -2x + 4 respectively, find g(x).

Ans. $x^2 - x + 1$

(PROBLEMS FOR SELF-EVALUATION)

- 1. Check whether g(x) = 3x 2 is a factor of $p(x) = 3x^3 + x^2 20x + 12$.
- 2. Find quotient and remainder applying the division algorithm on dividing $p(x) = x^3 6x^2 + 2x 4$ by g(x) = x 1.
- 3. Find zeros of the polynomial $2x^2 8x + 6$
- 4. Find the quadratic polynomial whose sum and product of its zeros are $\frac{2}{3}$, $\frac{-1}{3}$ respectively.
- 5. Find the zeroes of polynomial $x^3 2x^2 x + 2$
- 6. If one of the zeroes of the polynomial $2x^2 + px + 4 = 0$ is 2, find the other root, also find the value of p.
- 7. If α and β are the zeroes of the polynomial kx^2+4x+4 show that $\alpha^2+\beta^2=24$, find the value of k.
- 8. If α and β are the zeroes of the equation $6x^2 + x 2 = 0$, find $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$

---XXX---