POLYNOMIALS

SECTION A: (1 MARK)

1. Form a quadratic polynomial whose zeroes are $\frac{2}{3}$ and $\frac{-1}{3}$.
(CBSE 2008) $\quad\left(9 x^{2}-3 x-2\right)$
2. If -1 is a zero of the polynomial $f(x)=x^{2}-7 x-8$, then find the other zero.
(CBSE 2012)
3. If α and β are the zeroes of the polynomial $2 x^{2}+5 x+1$, then what is the value of $\alpha+\beta+\alpha \beta$?
4. If the sum of the zeroes of the polynomial $P(x)=3 k^{2}+(2 k+1) x-k+5 \quad(k=-6)$ is equal to the product of the zeroes, then, find the value of k.
5. The graph of the polynomial $f(x)=2 x-5$ is a straight line. At which point does the graph intersect the x-axis?
(CBSE 2012)

SECTION B: (2 MARKS)

6. For what value of $k,(-4)$ is a zero of the polynomial $x^{2}-x-(2 k+2)$? \quad (CBSE 2009) $\mathrm{K}=9$
7. If m and n are the zeroes of the polynomials $3 x^{2}+11 x-4$, find the value of $\frac{m}{n}+\frac{n}{m}$. $\quad\left(\frac{-145}{12}\right)$
(CBSE 2012)
8. If the zeroes of the polynomial $x^{2}+p x+q$ are double in value to the zeroes of the $p=-5$, polynomial $2 x^{2}-5 x-3$, find the values of p and q. $q=-6$.
9. Form a quadratic polynomial whose one zero is $3+\sqrt{2}$ and the sum of zeroes is 6 . $x^{2}-6 x+7$
10. If $a x^{2}-7 x+c$ has 14 as the sum of the zeroes and also as product of the zeroes,
$a=1 / 2$ find the value of a and c.
(HOTS)
$c=7$.

SECTION C: (3 MARKS)

11. Find the zeroes of the following polynomials by factorization method and verify the relations between the zeroes and the coefficients of the polynomial.
(i) $1 / 2, \sqrt{2}$
(i) $2 x^{2}-(1+2 \sqrt{2}) x+\sqrt{2}$
(EXEMPLAR)
(ii) $\quad y^{2}+\frac{3}{2} \sqrt{5} y-5$.
(ii) $-2 \sqrt{5}, \frac{\sqrt{5}}{2}$
12. Find the value of a and b so that $8 x^{4}+14 x^{3}-2 x^{2}+a x+b$ is exactly divisible by $4 x^{2}+3 x-2$.
(CBSE 2011)
$a=-7$
$b=2$.
13. If p and q are the zeroes of the polynomial $6 y^{2}-7 y+2$, find a quadratic polynomial whose zeroes are $\frac{1}{p}$ and $\frac{1}{q}$.
(CBSE 2011)
14. On dividing a polynomial $3 x^{3}+4 x^{2}+5 x-13$ by a polynomial $g(x)$, the quotient
$\frac{1}{2}\left(2 y^{2}-7 y\right.$
$+6)$
$x^{2}-2 x+3$ and the remainder were $(3 x+10)$ and $(16 x-43)$ respectively. Find $g(x)$.
(CBSE 2011)
15. If one zero of a polynomial $3 x^{2}-8 x+2 k+1$ is seven times the other, find the
$K=2 / 3$. value of k.
(CBSE 2011)

Downloaded from www.studiestoday.com

SECTION D: (4 MARKS)

16. Find the other zeroes of the polynomial $P(x)=2 x^{4}+7 x^{3}-19 x^{2}-14 x+30$, $-\sqrt{2}, \sqrt{2}$ if two of its zeroes are $\frac{3}{2}$ and -5 .
(CBSE 2011)
17. Given $\sqrt{2}$ is a zero of the cubic polynomial $6 x^{3}+\sqrt{2} x^{2}-10 x-4 \sqrt{2}$, find the other two zeroes.
18. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be $\mathrm{x}+\mathrm{a}$, find the values of k and a .
19. If the remainder on division of $x^{3}+2 x^{2}+k x+3$ by $(x-3) i s 21$, find the quotient and the value of k. Hence find the zeroes of the cubic polynomial $x^{3}+2 x^{2}+k x-18$.
(EXEMPLAR)
20. If α and β are the zeroes of the polynomial $p(x)=2 x^{2}+5 x+k$ satisfying the
$\frac{-\sqrt{2}}{2}, \frac{-2 \sqrt{2}}{3}$
$K=5$ $a=-5$.
$k=-9$
Quotient $=$ $x^{2}+5 x+6$ Zeroes: 3,-2,-3 $k=2$. relation $\alpha^{2}+\beta^{2}+\alpha \beta=\frac{21}{4}$, then find the value of k.
