

POLYNOMIALS

It is not once nor twice but times without number that the same ideas make their appearance in the world.

1. Find the value for K for which $x^4 + 10x^3 + 25x^2 + 15x + K$ exactly divisible by x + 7.

$$(Ans : K = -91)$$

Ans: Let $P(x) = x^4 + 10x^4 + 25x^2 + 15x + K$ and g(x) = x + 7Since P(x) exactly divisible by g(x)

$$r(x) = 0$$

$$x^{3} + 3x^{2} + 4x - 13$$
now $x + 7$

$$x^{4} + 10x^{3} + 25x^{2} + 15x + K$$

$$x^{4} + 7x^{3}$$

$$\therefore K + 91 = 0$$

$$K = -91$$

2. If two zeros of the polynomial $f(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$. Find the other zeros. (Ans:7, -5)

Ans: Let the two zeros are $2 + \sqrt{3}$ and $2 - \sqrt{3}$

Sum of Zeros =
$$2 + \sqrt{3} + 2 - \sqrt{3}$$

= 4
Product of Zeros = $(2 + \sqrt{3})(2 - \sqrt{3})$
= $4 - 3$

Quadratic polynomial is $x^2 - (sum) x + Product$

$$x^{2} - 2x - 35$$

$$x^{2} - 4x + 1)x^{4} - 6x^{3} - 26x^{2} + 138x - 35$$

$$x^{4} - 4x^{3} + x^{2}$$

$$-2x^{3} - 27x^{2} + 138x$$

$$-2x^{3} + 8x^{2} - 2x$$

$$-35x^{2} + 140x - 35$$

$$-35x^{2} + 140x - 35$$

$$0$$

$$x^{2}-2x-35=0$$

$$(x-7)(x+5)=0$$

$$x=7, -5$$

other two Zeros are 7 and -5

3. Find the Quadratic polynomial whose sum and product of zeros are $\sqrt{2} + 1$, $\frac{1}{\sqrt{2} + 1}$.

Ans:
$$sum = 2\sqrt{2}$$

Product = 1
Q.P =
 $X^2 - (sum) x + Product$
 $\therefore x^2 - (2\sqrt{2}) x + 1$

4. If α, β are the zeros of the polynomial $2x^2 - 4x + 5$ find the value of a) $\alpha^2 + \beta^2$ b) $(\alpha - \beta)^2$.

$$(Ans: a) -1, b) -6)$$

Ans:
$$p(x) = 2x^2 - 4x + 5$$

$$\alpha + \beta = \frac{-b}{a} = \frac{4}{2} = 2$$

$$\alpha \beta = \frac{c}{a} = \frac{5}{2}$$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha \beta$$
Substitute then we get, $\alpha^2 + \beta^2 = -1$

$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4 \alpha \beta$$
Substitute, we get $= (\alpha - \beta)^2 = -6$

5. If α, β are the zeros of the polynomial $x^2 + 8x + 6$ frame a Quadratic polynomial

whose zeros are a)
$$\frac{1}{\alpha}$$
 and $\frac{1}{\beta}$ b) $1 + \frac{\beta}{\alpha}$, $1 + \frac{\alpha}{\beta}$.

(Ans:
$$x^2 + \frac{4}{3}x + \frac{1}{6}$$
, $x^2 - \frac{32}{3}x + \frac{32}{3}$)

Ans: $p(x) = x^2 + 8x + 6$ $\alpha + \beta = -8$ and $\alpha \beta = 6$

a) Let two zeros are
$$\frac{1}{\alpha}$$
 and $\frac{1}{\beta}$

$$Sum = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \cdot \beta} = \frac{-8}{6} = \frac{-4}{3}$$

Product =
$$\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha \cdot \beta} = \frac{1}{6}$$

Required Q.P is

$$x^2 + \frac{4}{3}x + \frac{1}{6}$$

b) Let two Zeros are 1+
$$\frac{\beta}{\alpha}$$
 and 1 + $\frac{\alpha}{\beta}$

$$sum = 1 + \frac{\beta}{\alpha} + 1 + \frac{\alpha}{\beta}$$
$$= 2 + \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

$$=2+\frac{\alpha^2+\beta^2}{\alpha\beta}$$

= 2+
$$\frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$
 after solving this problem,

We get
$$=\frac{32}{3}$$

Product =
$$(1 + \frac{\beta}{\alpha})(1 + \frac{\alpha}{\beta})$$

$$=1+\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+1$$

$$=2+\frac{\alpha^2+\beta^2}{\alpha\beta}$$

Substitute this sum,

We get =
$$\frac{32}{3}$$

Required Q.P. is $x^2 - \frac{32}{3}x + \frac{32}{3}$

6. On dividing the polynomial $4x^4 - 5x^3 - 39x^2 - 46x - 2$ by the polynomial g(x) the quotient is $x^2 - 3x - 5$ and the remainder is -5x + 8. Find the polynomial g(x). (Ans: $4x^2 + 7x + 2$)

Ans:
$$p(x) = g(x) q(x) + r(x)$$

 $g(x) = \frac{p(x) - r(x)}{q(x)}$
let $p(x) = 4x^4 - 5x^3 - 39x^2 - 46x - 2$
 $q(x) = x^2 - 3x - 5$ and $r(x) = -5x + 8$
now $p(x) - r(x) = 4x^4 - 5x^3 - 39x^2 - 41x - 10$
when $\frac{p(x) - r(x)}{q(x)} = 4x^2 + 7x + 2$
 $\therefore g(x) = 4x^2 + 7x + 2$

7. If the squared difference of the zeros of the quadratic polynomial $x^2 + px + 45$ is equal to 144, find the value of p. (Ans: ± 18).

Ans: Let two zeros are
$$\alpha$$
 and β where $\alpha > \beta$
According given condition
$$(\alpha - \beta)^2 = 144$$
Let $p(x) = x^2 + px + 45$

$$\alpha + \beta = \frac{-b}{a} = \frac{-p}{1} = -p$$

$$\alpha\beta = \frac{c}{a} = \frac{45}{1} = 45$$

$$\text{now } (\alpha - \beta)^2 = 144$$

$$(\alpha + \beta)^2 - 4 \alpha\beta = 144$$

$$(-p)^2 - 4 (45) = 144$$
Solving this we get $p = \pm 18$

8. If α, β are the zeros of a Quadratic polynomial such that $\alpha + \beta = 24$, $\alpha - \beta = 8$. Find a Quadratic polynomial having α and β as its zeros. (Ans: $k(x^2 - 24x + 128)$)

Ans:
$$\alpha+\beta=24$$

 $\alpha-\beta=8$
 $-----$
 $2\alpha=32$

$$\alpha = \frac{32}{2} = 16, \therefore \alpha = 16$$

Work the same way to $\alpha + \beta = 24$

So,
$$\beta = 8$$

Q.P is
$$x^2 - (sum) x + product$$

= $x^2 - (16+8) x + 16 x 8$
Solve this,
it is $k (x^2 - 24x + 128)$

9. If α & β are the zeroes of the polynomial $2x^2 - 4x + 5$, then find the value of a. $\alpha^2 + \beta^2$ b. $1/\alpha + 1/\beta$ c. $(\alpha - \beta)^2$ d. $1/\alpha^2 + 1/\beta^2$ e. $\alpha^3 + \beta^3$

(Ans:-1,
$$\frac{4}{5}$$
, -6, $\frac{-4}{25}$, -7)

Ans: Let
$$p(x) = 2x^2 - 4x + 5$$

 $\alpha + \beta = \frac{-b}{a} = \frac{4}{2} = 2$
 $\alpha \beta = \frac{c}{a} = \frac{5}{2}$

a) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ Substitute to get = $\alpha^2 + \beta^2 = -1$

b)
$$\frac{1}{a} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$$

substitute, then we get $=\frac{1}{a} + \frac{1}{\beta} = \frac{4}{5}$

b) $(\alpha-\beta)^2 = (\alpha+\beta)^2 - 4 \alpha\beta$ Therefore we get, $(\alpha-\beta)^2 = -6$

d)
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha \beta^2} = \frac{-1}{\left(\frac{5}{2}\right)^2}$$

$$\therefore \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{-4}{25}$$

e) $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ Substitute this,

to get,
$$\alpha^3 + \beta^3 = -7$$

- 10. Obtain all the zeros of the polynomial $p(x) = 3x^4 15x^3 + 17x^2 + 5x 6$ if two zeroes are $-1/\sqrt{3}$ and $1/\sqrt{3}$. (Ans:3,2)
- 11. Give examples of polynomials p(x), g(x), q(x) and r(x) which satisfy the division algorithm.
 - a. $\deg p(x) = \deg q(x)$ b. $\deg q(x) = \deg r(x)$ c. $\deg q(x) = 0$.
- 12. If the ratios of the polynomial $ax^3+3bx^2+3cx+d$ are in AP, Prove that $2b^3-3abc+a^2d=0$

Ans: Let $p(x) = ax^3 + 3bx^2 + 3cx + d$ and α , β , r are their three Zeros

but zero are in AP

let
$$\alpha = m - n$$
, $\beta = m$, $r = m + n$

sum =
$$\alpha + \beta + r = \frac{-b}{a}$$

substitute this sum, to get = m= $\frac{-b}{a}$

Now taking two zeros as sum $\alpha\beta + \beta r + \alpha r = \frac{c}{a}$

$$(m-n)m + m(m+n) + (m+n)(m-n) = \frac{3c}{a}$$

Solve this problem, then we get

$$\frac{3b^2 - 3ac}{a^2} = n^2$$

Product
$$\alpha\beta$$
 r = $\frac{d}{a}$

$$(m-n)m (m+n) = \frac{-d}{a}$$

$$(m^2 - n^2)m = \frac{-d}{a}$$

$$[(\frac{-b}{a})^2 - (\frac{3b^2 - 3ac}{a^2})](\frac{-b}{a}) = \frac{-d}{a}$$

Simplifying we get

$$2b^3 - 3abc + a^2 d = 0$$

13. Find the number of zeros of the polynomial from the graph given.

(Ans:1)

If one zero of the polynomial $3x^2 - 8x + 2k + 1$ is seven times the other, find the 14. zeros and the value of k (Ans k = 2/3)

Self Practice

14. If (n-k) is a factor of the polynomials $x^2+px+q & x^2+m x+n$. Prove that

$$k = n + \frac{n - q}{m - p}$$

Ans: since (n - k) is a factor of $x^2 + px + q$

$$\therefore (n-k)^2 + p(n-k) + q = 0$$
And $(n-k)^2 + m(n-k) + n = 0$

Solve this problem by yourself,

$$\therefore k = n + \frac{n - q}{m - p}$$

- 16. If 2, $\frac{\text{SELF PRACTICE}}{2}$ are the zeros of $px^2 + 5x + r$, prove that p = r.
- 17. If m, n are zeroes of ax^2-5x+c , find the value of a and c if m + n = m.n=10

(Ans: a=1/2, c=5)

- 18. What must be subtracted from $8x^4 + 14x^3 2x^2 + 7x 8$ so that the resulting polynomial is exactly divisible by $4x^2+3x-2$.
- 19. What must be added to the polynomial $p(x) = x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by x^2+2x-3 .