EASY AND SCORING QUESTIONS FOR SLOW BLOOMERS

CHAPTER- POLYNOMIAL

Level 1 (1 mark)

1. The number of zeroes, the polynomial $f(x)=(x-3)^{2}+1$ can have is :
(a) 0 (b) 1 (c) 2 (d) 3

Ans: c
2. The graph of the polynomial $p(x)$ cuts the x-axis 5 times and touches it 3 times. The number of zeroes of $p(x)$ is : (a) 5 (b) 3 (c) 8 (d) 2
Ans: c
3. If the zeroes of the quadratic polynomial $x^{2}+(a+1) x+b$ are 2 and -3 , then :
(a) $a=-7, b=-1$ (b) $a=5, b=-1$
(c) $a=2, b=-6$ (d) $a=0, b=-6$

Ans:d
4 .The zeroes of the quadratic polynomial $x^{2}+89 x+720$ are
(a) both are negative
(b) both are positive
(c) one is positive and one is negative
(d) both are equal

Ans:a

Level 2 (2marks)

Q. 5 If α and β are zeros of the Polynomial $3 x^{2}+5 x+2$, Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$

Ans: $3 x^{2}+5 x+2$
$\alpha+\beta=\frac{-5}{3}$
$\alpha \beta=\frac{2}{3}$
$\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{-5}{2}$
Q. 6 Find the zeros of the quadratic polynomial $6 x^{2}-7 x-3$ and verify the relationship between the zeros and the coefficients.

Ans: $\mathrm{P}(\mathrm{x})=6 \mathrm{x}^{2}-7 \mathrm{x}-3$

$$
\begin{align*}
& =6 x^{2}-9 x+2 x-3 \\
& =3 x(2 x-3)+1(2 x-3) \\
& =(2 x-3)(3 x+1) \\
& x=3 / 2, x=-1 / 3 \tag{1Marks}
\end{align*}
$$

Now sum of zeroes $=3 / 2-1 / 3=7 / 6$
Also sum of zeroes $=-\mathrm{b} / \mathrm{a}=-(-7) / 6=7 / 6$
Product. of zeroes $=3 / 2 x-1 / 3=-1 / 2$
also product . of zeroes $=\mathrm{c} / \mathrm{a}=-3 / 6=-1 / 2$
Q. 7 Write the zeroes of the polynomial $x^{2}-x-6$.

Ans: $x^{2}-x-6$
$x^{2}-3 \mathrm{x}+2 \mathrm{x}-6=\mathrm{x}(\mathrm{x}-3)+2(\mathrm{x}-3)$
$=(\mathrm{x}-3)(\mathrm{x}+2)$, now zeroes of $x^{2}-x-6$ are $\mathrm{x}-3=0$ and $\mathrm{x}+2=0$
or $x=3, x=-2$
Q8 Find a quadratic polynomial with sum of zeroes $=1 / 4$ and product of zeroes $1 / 4$.
Ans:A quadratic polynomial with sum of zeroes= S and product of zeroes $=\mathrm{P}$ is
$=\mathrm{x}^{2}-\mathrm{Sx}+\mathrm{p}$
$=\mathrm{x}^{2}-\mathrm{x} / 4+1 / 4$
$=\frac{4 x^{2}-\mathrm{x}+1}{4}$
Therefore, quadratic polynomial whose $S=1 / 4, P=1 / 4$ is $4 x^{2}-x+1$

Level 3 (3 marks)

Q.9. Find the zeroes of quadratic $x^{2}-2 \mathrm{x}-8$ and verify the relationship between the zeroes and their co-efficient.
Ans: .

$$
\begin{aligned}
& \text { We have } \begin{aligned}
f(x)=x^{2}- & 2 x-8 \\
= & x^{2}-4 x+2 x-8 \\
= & x(x-4)+2(x-4)
\end{aligned}
\end{aligned}
$$

$$
=(x-4)(x+2)
$$

Zeroes of $f(x)$ is $f(x)=0$

$$
\begin{aligned}
& (x+2) \quad \text { and } \quad(x-4)=0 \\
& X+2=0 \quad \text { and } \quad x-4=0 \\
& X=-2 \quad \text { and } \quad
\end{aligned}
$$

Therefore Zeroes of $\mathrm{f}(\mathrm{x})$ is $\quad \alpha=-2, \beta=4$
Sum of zeroes $=\alpha+\beta=-2+4=2$
And $\frac{\text { cofficientofx }}{\text { cofficientofx } 2}=\frac{-(-2)}{1}=2$
Product of zeroes $=\alpha \beta=(-2) 4=-8$
And $\frac{\text { constantterm }}{\text { cofficient of } x 2}=\frac{-8}{1}=-8$
Q. 10 Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeros are $\sqrt{5} / 3$ and $-\sqrt{5} / 3$
. Ans: Since $\sqrt{\frac{5}{3}}$ and $-\sqrt{ } \frac{5}{3} \quad$ are two zeroes of $\mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
& \therefore\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=\mathrm{x}^{2}-\frac{5}{3} \text { is a factor of } \\
& \quad \Rightarrow 3 \mathrm{x}^{2}-5 \text { is a factor of } \mathrm{p}(\mathrm{x})
\end{aligned}
$$

$3 \mathrm{x}+6 \mathrm{x}-2 \mathrm{x}-10 \mathrm{x}-5=\left(\mathrm{x}+\sqrt{\frac{5}{3}}\right)\left(\mathrm{n}-\sqrt{\frac{5}{3}}\right)(\mathrm{n}+1)(\mathrm{n}+1)$
zeroesofp (x) are
$\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1,-1$
Q.11Find the zeros of the polynomial $4 \sqrt{ } 3 x^{2}+5 x-2 \sqrt{3}$.

Ans: $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$
Product $=4 \sqrt{3} \times 2 \sqrt{3}=24$
Sum = 5
We have $\mathrm{F}(\mathrm{x})=4 \sqrt{3} \mathrm{x}^{2}+8 \mathrm{x}-3 \mathrm{x}-2 \sqrt{3}$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{x})=4 x(\sqrt{3 x}+2)-\sqrt{3}(\sqrt{3} x+2) \\
& \mathrm{F}(\mathrm{x})=(\sqrt{3 x}+2)(4 x-\sqrt{3})
\end{aligned}
$$

$$
\begin{gathered}
\text { If } \mathrm{F}(\mathrm{x})=0 \quad \begin{array}{l}
\text { Zeroes of } \mathrm{f}[\mathrm{x}] \text { is given by } \\
(\sqrt{3 x}+2)(4 x-\sqrt{3})=0 \\
(\sqrt{3 x}+2)=0 \text { and } 4 x-\sqrt{3}=0 \\
\mathrm{x}=\frac{-2}{\sqrt{3}} \quad \mathrm{x}=\frac{-\sqrt{3}}{4}
\end{array} \\
\text { Hence Zeroes of } \mathrm{f}(\mathrm{x}) \text { is } \alpha \quad=\frac{-2}{\sqrt{3}} \quad \text { and } \quad \beta=\frac{\sqrt{3}}{4}
\end{gathered}
$$

Q. 12 If m and n are the zeros of the polynomial $3 x^{2}+11 x-4$, find the value of $\frac{m}{n}+\frac{n}{m}$.

Ans: Since m and n are the zeroes of $3 x^{2}+11 x-4$
$\therefore \quad \mathrm{m}+\mathrm{n}=-\frac{11}{3}$ and $\mathrm{mn}=-\frac{4}{3}$
Now,

$$
\begin{aligned}
& \frac{m}{n}+\frac{n}{m}=\frac{m^{2}+n^{2}}{m n}=\frac{(m+n)^{2}-2 m n}{m n} \\
& \frac{\left(-\frac{11}{3}\right)^{2}-2\left(-\frac{4}{3}\right)}{-\frac{4}{3}}=-\frac{145}{12}
\end{aligned}
$$

Level 4 (4 marks)

13. If p and q are the zeroes of polynomial $a x^{2}-5 x+c$, find the values of a and c , if $p+q=p q=10$
Ans:
Given polynomial is

$$
f(\mathrm{x})=\mathrm{ax}^{2}-5 x+c
$$

sum of zeroes $\mathrm{p}+\mathrm{q}=\frac{5}{a}$
Product of zeroes, $\mathrm{pq}=\frac{c}{a}$
Given, $p+q=p q=10$
$\frac{5}{a}=10 \Rightarrow a=\frac{1}{2}$

Also, $\quad \frac{c}{a}=10$
$\Rightarrow \quad \frac{c}{\frac{1}{2}}=10$
[\because from Eq.(i)]

$$
\Rightarrow \quad 2 \mathrm{c}=10 \Rightarrow \mathrm{c}=5
$$

Hence, the values of a and c are $\frac{1}{2}$ and 5 .
14. If the sum of the squares of zeroes of the polynomial $6 x^{2}+x+k$ is $25 / 36$, find the value of k ?

Ans: $. a=6, b=1, c=k$

$$
\begin{aligned}
& \alpha^{2}+\beta^{2}=25 / 36 \\
& \alpha+\beta=-b / a=-1 / 6 \\
& \alpha \beta=c / a=k / 6
\end{aligned}
$$

Now, $(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta$

$$
\begin{gathered}
(-1 / 6)^{2}=25 / 36+2 \times \mathrm{k} / 6 \\
1 / 36=25 / 36+2 \times \mathrm{k} / 6 \\
2 \mathrm{k} / 6=1 / 36-25 / 36=-24 / 36 \\
\mathrm{k} / 3=-24 / 36 \\
\mathrm{k}==\left(-\frac{24}{36}\right) \times 3=-2
\end{gathered}
$$

15. If α and β are two zeroes of the quadratic polynomial $p(x)=2 x^{2}-3 x+7$, find :-
a) $1 / \alpha+1 / \beta$
b) $\alpha^{2}+\beta^{2}$

Ans: $2 x^{2}-3 x+7$
$a=2 \quad b=-3 \quad c=7$
$\alpha+\beta=-\frac{b}{a}=\frac{3}{2}$
$\alpha \beta=\frac{c}{a}=\frac{7}{2}$
now, $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}$

$$
\begin{aligned}
& =\frac{\frac{3}{2}}{\frac{7}{2}} \\
& =\frac{3}{2} X \frac{2}{7} \\
& =\frac{3}{7}
\end{aligned}
$$

b) $(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta$

$$
\begin{gathered}
\left(\frac{3}{2}\right)^{2}=\alpha^{2}+\beta^{2}+2 \frac{7}{2} \\
\alpha^{2}+\beta^{2}=\frac{9}{4}-7=-\frac{19}{4}
\end{gathered}
$$

16. Find the value a for which polynomial $x^{4}+10 x^{3}+25 x^{2}+15 x+a$ is exactly divisible by $\mathrm{x}+7$

$$
\begin{gathered}
\text { Ans: Let } P(x)=x^{4}+10 x^{3}+25 x^{2}+15 x+a \\
\text { and } g(x)=x+7
\end{gathered}
$$

Since, $\mathrm{p}(\mathrm{x})$ is exactly divisible by $\mathrm{g}(\mathrm{x})$

$$
\therefore \quad r(x)=0
$$

$$
\text { Now, } \quad x + 7 \longdiv { x ^ { 3 } + 3 x ^ { 2 } + 4 x - 1 3 } \frac { x ^ { 4 } + 1 0 x ^ { 3 } + 2 5 x ^ { 2 } + 1 5 x + a } { }
$$

$$
\begin{aligned}
& x^{4}+7 x^{3} \\
& -\quad- \\
& \hline 3 x^{3}+25 x^{2}
\end{aligned}
$$

$$
3 x^{3}+21 x^{2}
$$

$$
\begin{aligned}
& 4 x^{2}+15 x \\
& 4 x^{2}+28 x \\
& -\quad- \\
& \hline \begin{array}{l}
-13 \mathrm{x}+\mathrm{a} \\
-13 \mathrm{x}-91 \\
+\quad+ \\
\mathrm{a}+91
\end{array}
\end{aligned}
$$

From Eq. (i) \therefore

$$
a+91=0 \Rightarrow a=-91
$$

