EASY AND SCORING QUESTIONS FOR SLOW BLOOMERS

CHAPTER- POLYNOMIAL

Level 1 (1 mark)

- 1. The number of zeroes, the polynomial $f(x) = (x-3)^2 + 1$ can have is :
- (a) 0 (b) 1 (c) 2 (d) 3

Ans: c

- **2.** The graph of the polynomial p(x) cuts the x-axis 5 times and touches it 3 times. The number of zeroes of p(x) is : (a) 5 (b) 3 (c) 8 (d) 2 Ans: c
- **3.** If the zeroes of the quadratic polynomial $x^2 + (a + 1)x + b$ are 2 and -3, then:
- (a) a = -7, b = -1 (b) a = 5, b = -1
- (c) a = 2, b = -6 (d) a = 0, b = -6

Ans:d

- **4.** The zeroes of the quadratic polynomial $x^2 + 89x + 720$ are
- (a) both are negative
- (b) both are positive
- (c) one is positive and one is negative
- (d) both are equal

Ans:a

Level 2 (2marks)

Q.5 If α and β are zeros of the Polynomial $3x^2+5x+2$, Find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$

Ans:
$$3x^2 + 5x + 2$$

$$\alpha + \beta = \frac{-5}{3}$$

$$\alpha\beta = \frac{2}{3}$$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-5}{2}$$

Q.6 Find the zeros of the quadratic polynomial $6x^2 - 7x - 3$ and verify the relationship between the zeros and the coefficients.

Ans:
$$P(x) = 6x^2 - 7x - 3$$

 $= 6x^2 - 9x + 2x - 3$
 $= 3x (2x-3) + 1(2x-3)$
 $= (2x - 3)(3x + 1)$
 $x = 3/2$, $x = -1/3$ (1Marks)
Now sum of zeroes = $3/2 - 1/3 = 7/6$
Also sum of zeroes = $-b/a = -(-7)/6 = 7/6$
Product . of zeroes = $3/2 \times -1/3 = -1/2$
also product . of zeroes = $c/a = -3/6 = -1/2$

Q.7 Write the zeroes of the polynomial $x^2 - x - 6$.

Ans:
$$x^2 - x - 6$$

 $x^2 - 3x + 2x - 6 = x(x - 3) + 2(x - 3)$
 $= (x - 3)(x + 2)$, now zeroes of $x^2 - x - 6$ are $x - 3 = 0$ and $x + 2 = 0$
or $x = 3$, $x = -2$

Q8 Find a quadratic polynomial with sum of zeroes = $\frac{1}{4}$ and product of zeroes $\frac{1}{4}$.

Ans:A quadratic polynomial with sum of zeroes=S and product of zeroes=P is

$$= x^{2}-Sx+p$$

$$= x^{2}-x/4+1/4$$

$$= \frac{4x^{2}-x+1}{4}$$

Therefore, quadratic polynomial whose $S=\frac{1}{4}$, P=1/4 is $4x^2-x+1$

Level 3 (3 marks)

Q.9. Find the zeroes of quadratic x^2 -2x-8 and verify the relationship between the zeroes and their co-efficient.

Ans: . We have
$$f(x) = x^2 - 2x - 8$$

= $x^2 - 4x + 2x - 8$
= $x(x-4) + 2(x-4)$

$$= (x - 4)(x + 2)$$

Zeroes of f(x) is f(x) = 0

$$(x+2) \quad \text{and} \quad (x-4)=0 \\ X+2=0 \quad \text{and} \quad x-4=0 \\ X=-2 \quad \text{and} \quad x=4$$
 Therefore Zeroes of f(x) is $\alpha=-2$, $\beta=4$

Sum of zeroes = $\alpha + \beta = -2 + 4 = 2$

And
$$\frac{cofficientofx}{cofficientofx^2} = \frac{-(-2)}{1} = 2$$

Product of zeroes = $\alpha\beta$ = (-2)4 = -8

And
$$\frac{constantterm}{cofficient \ of \ x2} = \frac{-8}{1} = -8$$

Q.10 Obtain all other zeroes of $3x^4+6x^3-2x^2-10x-5$, if two of its zeros are $\sqrt{5/3}$ and $-\sqrt{5/3}$

Ans:

Since
$$\sqrt{\frac{5}{3}}$$
 and $-\sqrt{\frac{5}{3}}$ are two zeroes of $f(x)$

$$\therefore \left(x - \sqrt{\frac{5}{3}}\right)(x + \sqrt{\frac{5}{3}}) = x^2 - \frac{5}{3} \text{ is a factor of}$$

$$\Rightarrow 3x^2 - 5 \text{ is a factor of } p(x)$$

 $3x+6x-2x-10x-5 = (x+\sqrt{\frac{5}{3}}) (n-\sqrt{\frac{5}{3}}) (n+1)(n+1)$ zeroesof p(x) are

$$\sqrt{\frac{5}{3}}$$
, $-\sqrt{\frac{5}{3}}$, -1, -1

Q.11Find the zeros of the polynomial $4\sqrt{3}x^2 + 5x - 2\sqrt{3}$.

Ans:
$$4\sqrt{3}x^2 + 5x - 2\sqrt{3}$$

Product $= 4\sqrt{3} \times 2\sqrt{3} = 24$
Sum $= 5$
We have F (x) $= 4\sqrt{3}x^2 + 8x - 3x - 2\sqrt{3}$
F (x) $= 4x(\sqrt{3}x + 2) - \sqrt{3}(\sqrt{3}x + 2)$
F (x) $= (\sqrt{3}x + 2)(4x - \sqrt{3})$

:.

Zeroes of f[x] is given by
$$(\sqrt{3x} + 2)(4x - \sqrt{3}) = 0$$

$$(\sqrt{3x} + 2) = 0$$

$$(\sqrt{3x$$

Q.12 If m and n are the zeros of the polynomial $3x^2 + 11x - 4$, find the value of $\frac{m}{n} + \frac{n}{m}$.

Ans: Since m and n are the zeroes of $3x^2 + 11x - 4$

Ans: Since m and n are the zeroes of
$$3x^2 + 1 1x - 4$$

$$\frac{m}{n} + n = -\frac{11}{3} \text{ and } mn = -\frac{4}{3}$$
Now,
$$\frac{m}{n} + \frac{n}{m} = \frac{m^2 + n^2}{mn} = \frac{(m+n)^2 - 2mn}{mn}$$

$$\frac{(-\frac{11}{3})^2 - 2(-\frac{4}{3})}{-\frac{4}{3}} = -\frac{145}{12}$$
Level 4 (4 marks)

13. If p and q are the zeroes of polynomial $ax^2 - 5x + c$, find the values of a and c, if p+q = pq=10Ans:

Given polynomial is
$$f(x) = ax^2 - 5x + c$$
 sum of zeroes $p+q = \frac{5}{a}$ Product of zeroes, $pq = \frac{c}{a}$ Given, $p+q = pq = 10$
$$\frac{5}{a} = 10 \Rightarrow a = \frac{1}{2}$$
 (i)

Also,
$$\frac{c}{a} = 10$$

$$\Rightarrow \frac{c}{\frac{1}{2}} = 10$$
 [:: from Eq.(i)]

$$\Rightarrow$$
 2c = 10 \Rightarrow c = 5

Hence, the values of a and c are $\frac{1}{2}$ and 5.

14. If the sum of the squares of zeroes of the polynomial $6x^2+x+k$ is 25/36, find the value of k?

$$\alpha^2 + \beta^2 = 25/36$$

$$\alpha + \beta = -b/a = -1/6$$

$$\alpha\beta = c/a = k/6$$

Now,
$$(\alpha+\beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$$

$$(-1/6)^2 = 25/36 + 2xk/6$$

$$1/36 = 25/36 + 2xk/6$$

$$2k/6 = 1/36 - 25/36 = -24/36$$

$$k/3 = -24/36$$

$$k = (-\frac{24}{36})x3 = -2$$

quad 15. If α and β are two zeroes of the quadratic polynomial p(x) =2x² - 3x+7, find :-

a)
$$1/\alpha + 1/\beta$$
 b) $\alpha^2 + \beta^2$

b)
$$\alpha^2 + \beta^2$$

$$\alpha + \beta = -\frac{b}{a} = \frac{3}{2}$$

$$\alpha\beta = \frac{c}{a} = \frac{7}{2}$$

now,
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$$

$$=\frac{\frac{3}{2}}{\frac{7}{2}}$$

$$=\frac{3}{2}X\frac{2}{7}$$

$$=\frac{3}{7}$$

b)
$$(\alpha+\beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$$

$$(\frac{3}{2})^2 = \alpha^2 + \beta^2 + 2\frac{7}{2}$$

$$\alpha^2 + \beta^2 = \frac{9}{4} - 7 = -\frac{19}{4}$$

16. Find the value a for which polynomial $x^4 + 10x^3 + 25x^2 + 15x + a$ is exactly divisible by x+7

Ans: Let
$$P(x) = x^4 + 10 x^3 + 25 x^2 + 15 x + a$$

and $g(x) = x + 7$
Since, $p(x)$ is exactly divisible by $g(x)$
 \therefore $r(x) = 0$
 $x^3 + 3x^2 + 4x - 13$
Now, $x + 7 x^4 + 10x^3 + 25x^2 + 15x + a$
 $x^4 + 7x^3$
 $\frac{-}{3x^3 + 25x^2}$
 $3x^3 + 21x^2$
 $\frac{-}{4x^2 + 15x}$
 $4x^2 + 28x$
 $\frac{-}{-13x - 91}$
 $\frac{-}{4x^2 + 15x}$

From Eq. (i) :

 $a+91 = 0 \implies a = -91$