Downloaded from www.studiestoday.com LINEAR EQUATIONS IN ONE VARIABLE

LINEAR EQUATION

An equation in which the highest power of the unknown variable is one, is a linear equation.
SOME PROPERTIES OF EQUALITY

1. Reflexive Property

Every number is equal to itself.
Example : 5 = 5, $2=2$ and So on.
2. Symmetric Property

For any two number, if the first number is equal to the second, then the second number is eq al to the first.
If $x \& y$ are two numbers and $x=y$, then $y=x$.
Example : $3+4=5+2$
$\Rightarrow 5+2=3+4$
3. Transitive Property

If $x, y \& z$ are three numbers such that $x=y \& y=z$, then $x=z$.
Example : $9+3=12, \quad 12=3 \times 4$
$\therefore \quad 9+3=3 \times 4$.
4. If $\mathbf{x}, \mathbf{y} \& \mathbf{z}$ are three numbers such that $=y \&-z$, then $y=z$.

Example : $24=8 \times 3, \quad 24=14+10$
$\Rightarrow 8 \times 3=14+10$
SUMULTANEOUS LINEAR EOUATIONS
To solve the equation in rolving two unknown, we require two equations.
Solving two Sirultaneous Equations
When two equations, each in two variables, are given, they can be solved in four ways.
(a) Eliminat on by cancellation

Ex. If $2 x+3 y=10$ and $x+2 y=5$, then find the values of $x+y$?
Sol. Using this method, the two equations are reduced to a single variable equation by eliminating one of the variables.

Step. 1 : Here, we eliminate the Y term and for this, we multiply the first equation with the co-efficient of y in the second equation and multiply the second equation with the coefficient of y in the first equation so that the coefficient of y terms is both the equations becomes equal.
$(2 x+3 y=10) 2 \Rightarrow 4 x+6 y=20$
$(x+2 y=5) 3 \Rightarrow 3 x+6 y=15$
(H)

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

Step. 2 : Subtract equation (3) from equation (4)
$3 x+6 y=15$
$4 x+6 y=20$
$-\mathrm{x}=-5 \quad \Rightarrow \mathrm{x}=5$

Step. 3 : Substitute the value of x in equation (1) or equation (2) to find the value of Y. Here, substituting the value of x in the equation (1)

We have -
$2(5)+3 y=10$

$$
\begin{aligned}
& 3 y=10-10 \\
& y=\frac{10}{3}=0
\end{aligned}
$$

$\therefore \quad$ The solution of the given pair of equations is $\mathrm{x}=5, \mathrm{y}=0$.
(b) Elimination of substitution

Ex. If $5 \mathrm{x}-2 \mathrm{y}=17 \& 3 \mathrm{x}+\mathrm{y}=8$, then find the value of $\mathrm{x}+\mathrm{y}$.
Sol. Using this method, the two equations are reduced to a single variable equation by substituting the value of one variable obtained from one equation, in the other equation.

Step. 1 : Using the first equation, find x is terms of y.

$$
\begin{aligned}
\text { i.e. } 5 x-2 y=17 & \Rightarrow \quad 5 x=17-2 y \\
& \Rightarrow \quad x=\frac{17+2 y}{5}
\end{aligned}
$$

Step. 2 : Substitute the value of x in the equation (2) to find the value of y.

$$
\begin{aligned}
& \text { ie. } \quad 3 x+y=8 \\
& \Rightarrow \quad \frac{3(17+2 y)}{5}+y=8
\end{aligned}
$$

Step. 3 : Simplity he equation in terms of y \& find the value of y.

$$
\begin{array}{ll}
& 3(17+2 y)+5 y=8 \times 5 \\
\Rightarrow & 51+6 y+5 y=40 \\
\Rightarrow & 11 y=40-51 \\
\Rightarrow & 11 y=-11 \\
\Rightarrow & Y=-1
\end{array}
$$

Step. 4 : Substituting the value of y obtained in step (3) in equation (1) or (2), we get $x=3$.
$\therefore \quad$ the solution for the given pair of equation is $\mathrm{x}=3 \& \mathrm{y}=-1$.

Downloaded from www.studiestoday.com

(d) Adding two equations and subtracting one equation from the other.

Ex. $\quad 4 x+3 y=11 \quad \& \quad 3 x+4 y=10$
Sol. Adding both equations, we get,
Step. $1: 7 x+7 y=21$

$$
\begin{array}{ll}
\Rightarrow & 7(x+y)=7 \times 3 \\
\Rightarrow & x+y=3 \tag{3}
\end{array}
$$

Step. 2 : Subtracting the equation (2) from the equation (1).

$$
\begin{align*}
& (4 x+3 y)-(3 x+4 y)=11-10 \\
& \Rightarrow \quad x-y=1 \tag{4}
\end{align*}
$$

Step. 3 : Adding the equations (3) \& (4), we get.
$(x+y)+(x-y)=3+1$
$2 \mathrm{x}=4 \Rightarrow \mathrm{x}=2$
$2+y=3$
[from (3)]
$y=1$
Substitutingy $=1$, in any of the equations (1), (2), (3) or (4).
We get $\mathrm{x}=2$.
The solution of the pair of equations is $\mathrm{x}=2, \mathrm{y}=1$.
(A) QUESTIONS

Solve the following linear equations by using the method of Elin ination.

1. $3 x+2 y=11$
$2 x+3 y=4$
2. $8 x+5 y=9$
$3 x+2 y=4$
3. $\frac{x}{10}+\frac{y}{5}+1=15$
$\frac{x}{8}+\frac{y}{6}=15$
4. $\quad 11 x+15 y+23=0$
$7 x-2 y-20=0$
(B) Solve the following equations by using the method of substitution :-
5. $2 x+3 y=$
$3 x+4 y=5$
6. $\frac{2 \mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=2$
$\frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{y}}{\mathrm{b}}=4$
7. $7(y+3)-2(x+2)=14$
$4(y-2)+3(x-3)=2$
8. Sum of two numbers is 35 and their difference is 13. Find the numbers. (By Adding \& Subtracting Rule)
9. In a two digit number, the unit's digit is twice the ten's digit. If 27 is added to the number, the digits interchange their places. Find the number. (By any method, out of 3 method)
