LINEAR EQUATIONS IN TWO VARIABLES
 FREQUENTLY ASKED QUESTIONS WITH SOLUTIONS

LEVEL-1 1 MARK EACH)

Q1.Which of the following pairs of linear equations are consistent/inconsistent?
(i) $x+y=5,2 x+2 y=10$

Answer
(i) $x+y=5 ; 2 x+2 y=10$
$a_{1} / a_{2}=1 / 2$
$b_{1} / b_{2}=1 / 2$ and
$c_{1} / c_{2}=5 / 10=1 / 2$
Hence, $a_{1} / \mathrm{a}_{2}=b_{1} / b_{2}=c_{1} / c_{2}$
Therefore, these linear equations are coincident pair of lines and thus have infinite number of possible solutions. Hence, the pair of linear equations is consistent.

Q2. The coach of a cricket team buys 3 bats and 6 balls for Rs 3900 . Later, she buys another bat and 3 more balls of the same kind for Rs 1300 . Represent this situation algebraically.
Solution: Let cost of one bat $=\operatorname{Rs} x$
Cost of one ball = Rs y
3 bats and 6 balls for Rs 3900 So that
$3 x+6 y=3900$
Given that she buys another bat and 2 more balls of the same kind for Rs 1300
So, we get
$x+2 y=1300$
Q3.Find the number of solutions of the following pair of linear equations:
$x+2 y-8=0$
$2 x+4 y=16$
Solution: $a_{1} / a_{2}=1 / 2$

$$
\begin{gathered}
\mathrm{b}_{1} / b_{2}=1 / 2 \\
c_{1} / c_{2}=1 / 2
\end{gathered}
$$

Here $a_{1} / a_{2}=\mathrm{b}_{1} / \mathrm{b}_{2}=c_{1} / c_{2}$
Therefore, the equations have infinite number of solutions.
Q4. Two lines are given to be parallel. The equation of one of the lines is $4 x+3 y=14$. Find the equation of the second line.
Solution: $8 \mathrm{x}+6 \mathrm{y}=28$
$x+y=14 ; x-y=4$
Solution: $x+y=14$
$x-y=4$
From equation (i), we get
$x=14-y \ldots$ (iii)
Putting this value in equation (ii), we get
$(14-y)-\mathrm{y}=4$
$14-2 y=4$
$10=2 y$
$y=5$
Putting this in equation (iii), we get
$x=9$
$\therefore x=9$ and $y=5$
Q2. For which value of k will the following pair of linear equations have no solution?
$3 x+y=1$
$(2 k-1) x+(k-1) y=2 k+1$

Solution:

$3 x+y-1=0$
$(2 k-1) x+(k-1) y-(2 k+1)=0$
$a_{1} / a_{2}=3 / 2 k-1$
$b_{1} / b_{2}=1 / k-1$ and
$c_{1} / c_{2}=-1 /-2 k-1=1 / 2 k+1$
For no solutions,

$$
a_{1} / a_{2}=b_{1} / b_{2} \neq c_{1} / c_{2}
$$

$3 / 2 k-1=1 / k-1 \neq 1 / 2 k+1$
$3 / 2 k-1=1 / k-1$
$3 k-3=2 k-1$
$k=2$
Hence, for $k=2$, the given equation has no solution.
Q3. Solve the following pair of linear equations by the elimination method.
$x+y=5$ and $2 x-3 y=4$

Solution

$x+y=5$ and $2 x-3 y=4$
By elimination method
$x+y=5 \ldots$ (i)
$2 x-3 y=4 \ldots$ (ii)
Multiplying equation (i) by (ii), we get
$2 x+2 y=10 \ldots$ (iii)
$2 x-3 y=4$... (ii)
$5 y=6$
$y=6 / 5$
Putting the value in equation (i), we get
$x=5-(6 / 5)=19 / 5$
Hence, $x=19 / 5$ and $y=6 / 5$
Q4. On comparing the ratios $a_{1} / a_{2}, b_{1} / b_{2}$ and c_{1} / c_{2}, find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincident
$5 x-4 y+8=0$
$7 x+6 y-9=0$
Solution:Comparing these equation with
$a_{1} x+b_{1} y+c_{1}=0$
$a_{2} x+b_{2} y+c_{2}=0$

We get
$a_{1}=5, b_{1}=-4$, and $c_{1}=8$
$a_{2}=7, b_{2}=6$ and $c_{2}=-9$
$a_{1} / \mathrm{a}_{2}=5 / 7$,
$\mathrm{b}_{1} / b_{2}=-4 / 6$ and
$c_{1} / c_{2}=8 /-9$
Hence, $a_{1} / a_{2} \neq \mathrm{b}_{1} / \mathrm{b}_{2}$
Therefore, both are intersecting lines at one point.

LEVEL-3 (3 MARKS EACH)

Q1. 10 students of Class X took part in a Mathematics quiz. If the number of girls is $\mathbf{4}$ more than the number of boys, find the number of boys and girls who took part in the quiz. Find the solutions graphically.

Solution

Let number of boys $=x$
Number of girls $=y$
Given that total number of student is 10 so that
$x+y=10$
Subtract y both side we get
$x=10-y$
Putting $y=0,5,10$ we get
$x=10-0=10$
$x=10-5=5$
$x=10-10=0$

Given that if the number of girls is 4 more than the number of boys
So that
$y=x+4$
Putting $x=-4,0,4$, and we get
$y=-4+4=0$
$y=0+4=4$

Downloaded from www.studiestoday.com

$y=4+4=8$

x	-4	0	4
y	0	4	8

Graphical representation

Therefore, number of boys $=3$ and number of girls $=7$.
Q2. 5 pencils and 7 pens together cost Rs 50 , whereas 7 pencils and 5 pens together cost Rs 46. Find the cost of one pencil and that of one pen.

Solution:

Let cost of pencil = Rs x
Cost of pens = Rs y
5 pencils and 7 pens together cost Rs 50,
So we get
$5 x+7 y=50$
Subtracting $7 y$ both sides we get
$5 x=50-7 y$
Dividing by 5 we get
$x=10-7$ y $/ 5$
Putting value of $y=5,10$ and 15 we get
$x=10-7 \times 5 / 5=10-7=3$
$x=10-7 \times 10 / 5=10-14=-4$
$x=10-7 \times 15 / 5=10-21=-11$

x	3	-4	-11
y	5	10	15

Given that 7 pencils and 5 pens together cost Rs 46
$7 x+5 y=46$
Subtracting $7 x$ both side we get
$5 y=46-7 x$
Dividing by 5 we get
$y=46 / 5-7 x / 5$
$\mathrm{y}=9.2-1.4 x$

x	0	2	4
y	9.2	6.4	3.6

Graphical representation

Therefore, cost of one pencil $=$ Rs 3 and cost of one pen $=$ Rs 5.
Q3. Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in $\mathbf{5}$ hours. If they travel towards each other, they meet in $\mathbf{1}$ hour. What are the speeds of the two cars?

Let the speed of 1 st car and 2 nd car be $\mathrm{u} \mathrm{km} / \mathrm{h}$ and $\mathrm{v} \mathrm{km} / \mathrm{h}$.
Respective speed of both cars while they are travelling in same direction $=(u-v) \mathrm{km} / \mathrm{h}$ Respective speed of both cars while they are travelling in opposite directions i.e., travelling towards each other $=(u+v) \mathrm{km} / \mathrm{h}$
According to the question,
$5(u-v)=100$
$\Rightarrow u-v=20$.
$1(u+v)=100$.
Adding both the equations, we get
$2 u=120$
$u=60 \mathrm{~km} / \mathrm{h}$
Putting this value in equation (ii), we obtain
$v=40 \mathrm{~km} / \mathrm{h}$
Hence, speed of one car $=60 \mathrm{~km} / \mathrm{h}$ and speed of other car $=40 \mathrm{~km} / \mathrm{h}$ How many questions were there in the test?

Let the number of right answers and wrong answers be x and y respectively.

According to the question,
$3 x-y=40$
$4 x-2 y=50$
$\Rightarrow 2 x-y=25$...
Subtracting equation (ii) from equation (i), we get
$x=15$... (iii)
Putting this value in equation (ii), we get
$30-y=25$
$y=5$
Therefore, number of right answers $=15$
And number of wrong answers $=5$
Total number of questions $=20$

LEVEL-4 (4 MARKS EACH)

Q1.Draw the graphs of the equations $x-y+1=0$ and $3 x+2 y-12=0$. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis, and shade the triangular region.
Solution.
$x-y+1=0$
$x=y-1$

$3 x+2 y-12=0$
$x=12-2 y / 3$

x	4	2	0
y	0	3	6

Graphical representation

From the figure, it can be observed that these lines are intersecting each other at point $(2,3)$ and x-axis at $(-1,0)$ and $(4,0)$. Therefore, the vertices of the triangle are $(2,3),(-1,0)$, and $(4$, $0)$.

Solution:

$2 x+3 y=11 \ldots$ (i)
Subtracting $3 y$ both side we get
$2 x=11-3 y \ldots$ (ii)
Putting this value in equation second we get
$2 x-4 y=-24 \ldots$ (iii)
$11-3 y-4 y=-24$
$7 y=-24-11$
$-7 y=-35$
$y=-35 /-7$
$y=5$
Putting this value in equation (iii) we get
$2 x=11-3 \times 5$
$2 x=11-15$
$2 x=-4$
Dividing by 2 we get
$x=-2$
Putting the value of x and y
$y=m x+3$.
$5=-2 m+3$
$2 m=3-5$
$m=-2 / 2$
$m=-1$
Q3.The sum of the digits of a two-digit number is 9 . Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.

Solution: Let the unit digit and tens digits of the number be x and y respectively.
Then, number $=10 y+x$
Number after reversing the digits $=10 x+y$
According to the question,
$\mathrm{x}+y=9 \ldots$ (i)
$9(10 y+x)=2(10 x+y)$
$88 y-11 x=0$
$-x+8 y=0$.
Adding equation (i) and (ii), we get
$9 y=9$
$y=1$
Putting the value in equation (i), we get
$x=8$
Hence, the number is $10 y+x=10 \times 1+8=18$.

Q4.Solve the following pairs of equations by reducing them to a pair of linear equations:
$\frac{10}{x+y}+\frac{2}{x-y}=4$
$\frac{15}{x+y}-\frac{5}{x-y}=-2$

Solution. $\frac{10}{x+y}+\frac{2}{x-y}=4$

$$
\frac{15}{x+y}-\frac{5}{x-y}=-2
$$

Putting $1 / x+y=p$ and $1 / x-y=\mathrm{q}$ in the given equations, we get:
$10 p+2 q=4$
$\Rightarrow 10 p+2 q-4=0$
$15 p-5 q=-2$
$\Rightarrow 15 p-5 q+2=0$
Using cross multiplication, we get
$p / 4-20=q /-60-(-20)=1 /-50-30$
$p /-16=q /-80=1 /-80$
$p /-16=1 /-80$ and $q /-80=1 /-80$
$p=1 / 5$ and $q=1$
$p=1 / x+y=1 / 5$ and $q=1 / x-y=1$
$x+y=5$.
and $x-y=1 \ldots$ (iv)
Adding equation (iii) and (iv), we get
$2 x=6$
$x=3$
Putting value of x in equation (iii), we get
$y=2$
Hence, $x=3$ and $y=2$

