CHAPTER 6

CONSTRUCTIONS

KEY POINTS

1. Construction should be neat and clean and as per scale given in question.
2. Steps of construction should be provided only to those questions where it is mentioned.

QUESTIONS

1. Draw a line segment $A B=7 \mathrm{~cm}$. Take a point P on $A B$ such that $\mathrm{AP}: \mathrm{PB}=3: 4$.
2. Draw a line segment $P Q=10 \mathrm{~cm}$. Take a point A on $P Q$ such that $\frac{\mathrm{PA}}{\mathrm{PQ}}=\frac{2}{5}$. Measure the length of PA and AQ .
3. Construct a $\triangle A B C$ in which $B C=6.5 \mathrm{~cm}, A B=4.5 \mathrm{~cm}$ and $\angle A C B=60^{\circ}$. Construct another triangle similar to $\triangle A B C$ such that each side of new triangle is $\frac{4}{5}$ of the corresponding sides of $\triangle A B C$.
4. Draw a triangle $X Y Z$ such that $X Y=5 \mathrm{~cm}, Y Z=7 \mathrm{~cm}$ and $\angle X Y Z=75^{\circ}$. Now construct a $\Delta X^{\prime} Y Z^{\prime} \sim \Delta X Y Z$ with its sides $\frac{3}{2}$ times of the corresponding sides of $\triangle X Y Z$.
5. Construct an isoscales triangle whose base is 8 cm and altitude 5 cm and then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the given triangle.
6. Draw an isosceles $\triangle A B C$ with $A B=A C$ and base $B C=7 \mathrm{~cm}$ and vertical angle is 120°. Construct $\Delta A B^{\prime} C^{\prime} \sim \Delta A B C$ with its sides $1 \frac{1}{3}$ times of the corresponding sides of $\triangle A B C$.
7. Draw $\triangle P Q R$ in which $\angle \mathrm{Q}=90^{\circ}, \mathrm{PQ}=6 \mathrm{~cm}, \mathrm{QR}=8 \mathrm{~cm}$. Construct $\Delta P^{\prime} Q^{\prime} \sim \Delta P Q R$ with its sides equal to $2 / 3$ rd of corresponding sides of $\triangle \mathrm{PQR}$.
8. Construct a right angled triangle in which base is 2 times of the perpendicular. Now construct a triangle similar to it with base 1.5 times of the original triangle.
9. Draw an equilateral triangle $P Q R$ with side 5 cm . Now construct $\triangle P Q^{\prime} R^{\prime}$ such that $\frac{P Q}{P Q^{\prime}}=\frac{1}{2}$. Measure $P Q^{\prime}$.
10. Draw a circle of radius 4 cm with centre O . Take a point P outside the circle such that $O P=6 \mathrm{~cm}$. Draw tangents $P A$ and $P B$ to the circle. Measure the lengths of PA and PB.
11. Draw a line segment $A B=8 \mathrm{~cm}$. Taking $A B$ as diameter a circle is drawn with centre O. Now draw $O P \perp A B$. Through P draw a tangent to the circle.
12. Draw a circle of radius $\mathrm{OP}=3 \mathrm{~cm}$. Draw $\angle \mathrm{POQ}=45^{\circ}$ such that $\mathrm{OQ}=$ 5 cm . Now draw two tangents from Q to given circle.
13. Draw a circle with centre O and radius 3.5 cm . Draw two tangents $P A$ and $P B$ from an external point P such that $\angle A P B=45^{\circ}$. What is the value of $\angle A O B+\angle A P B$.
14. Draw a circle of radius 4 cm . Now draw a set of tangents from an external point P such that the angle between the two tangents is half of the central angle made by joining the points of contact to the centre.
15. Draw a line segment $A B=9 \mathrm{~cm}$. Taking A and B as centres draw two circles of radius 5 cm and 3 cm respectively. Now draw tangents to each circle from the centre of the other.
16. Draw a circle of radius 3.5 cm with centre O. Take point P such that $\mathrm{OP}=6 \mathrm{~cm}$. OP cuts the circle at T . Draw two tangents PQ and PR . Join Q to R. Through T draw $A B$ parallel to $Q R$ such that A and B are point on $P Q$ and $P R$.
17. Draw a circle of diameter 7 cm . Draw a pair of tangents to the circle, which are inclined to each other at an angle of 60°.
18. Draw a circle with centre O and radius 3.5 cm . Take a horizontal diameter. Extend it to both sides to point P and Q such that $O P=O Q=7 \mathrm{~cm}$. Draw tangents PA and QB one above the diameter and the other below the diameter. Is $\mathrm{PA}|\mid \mathrm{BQ}$.
