CHAPTER 6

CONSTRUCTIONS

KEY POINTS

- 1. Construction should be neat and clean and as per scale given in question.
- Steps of construction should be provided only to those questions where it is mentioned.

QUESTIONS

- 1. Draw a line segment AB = 7 cm. Take a point P on AB such that AP: PB = 3: 4.
- 2. Draw a line segment PQ = 10 cm. Take a point A on PQ such that $\frac{PA}{PQ} = \frac{2}{5}$. Measure the length of PA and AQ.
- 3. Construct a $\triangle ABC$ in which BC = 6.5 cm, AB = 4.5 cm and $\angle ACB$ = 60°. Construct another triangle similar to $\triangle ABC$ such that each side of new triangle is $\frac{4}{5}$ of the corresponding sides of $\triangle ABC$.
- 4. Draw a triangle XYZ such that XY = 5 cm, YZ = 7 cm and \angle XYZ = 75°. Now construct a \triangle X'YZ' ~ \triangle XYZ with its sides $\frac{3}{2}$ times of the corresponding sides of \triangle XYZ.
- 5. Construct an isoscales triangle whose base is 8 cm and altitude 5 cm and then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the given triangle.

118 X – Maths

Downloaded from www.studiestoday.com

- 6. Draw an isosceles $\triangle ABC$ with AB = AC and base BC = 7 cm and vertical angle is 120°. Construct $\triangle AB'C' \sim \triangle ABC$ with its sides $1\frac{1}{3}$ times of the corresponding sides of $\triangle ABC$.
- 7. Draw $\triangle PQR$ in which $\angle Q = 90^\circ$, PQ = 6 cm, QR = 8 cm. Construct $\triangle P'QR' \sim \triangle PQR$ with its sides equal to 2/3rd of corresponding sides of $\triangle PQR$.
- Construct a right angled triangle in which base is 2 times of the perpendicular. Now construct a triangle similar to it with base 1.5 times of the original triangle.
- 9. Draw an equilateral triangle PQR with side 5cm. Now construct $\Delta PQ'R'$ such that $\frac{PQ}{PQ'} = \frac{1}{2}$. Measure PQ'.
- Draw a circle of radius 4 cm with centre O. Take a point P outside the circle such that OP = 6cm. Draw tangents PA and PB to the circle. Measure the lengths of PA and PB.
- 11. Draw a line segment AB = 8 cm. Taking AB as diameter a circle is drawn with centre O. Now draw OP⊥AB. Through P draw a tangent to the circle.
- 12. Draw a circle of radius OP = 3 cm. Draw ∠POQ = 45° such that OQ = 5 cm. Now draw two tangents from Q to given circle.
- 13. Draw a circle with centre O and radius 3.5 cm. Draw two tangents PA and PB from an external point P such that ∠APB = 45°. What is the value of ∠AOB + ∠APB.
- 14. Draw a circle of radius 4 cm. Now draw a set of tangents from an external point P such that the angle between the two tangents is half of the central angle made by joining the points of contact to the centre.
- 15. Draw a line segment AB = 9 cm. Taking A and B as centres draw two circles of radius 5 cm and 3 cm respectively. Now draw tangents to each circle from the centre of the other.
- 16. Draw a circle of radius 3.5 cm with centre O. Take point P such that OP = 6 cm. OP cuts the circle at T. Draw two tangents PQ and PR. Join Q to R. Through T draw AB parallel to QR such that A and B are point on PQ and PR.

Downloaded from www.studiestoday.com

- 17. Draw a circle of diameter 7 cm. Draw a pair of tangents to the circle, which are inclined to each other at an angle of 60°.
- 18. Draw a circle with centre O and radius 3.5 cm. Take a horizontal diameter. Extend it to both sides to point P and Q such that OP = OQ = 7 cm. Draw tangents PA and QB one above the diameter and the other below the diameter. Is PA || BQ.

120 X – Maths