CO-ORDINATE GEOMETRY

IMPORTANT CONCEPTS TAKE A LOOK

1. Distance Formula:-

The distance between two points $A(x_1,y_1)$ and $B(x_2,y_2)$ is given by the formula. $AB=v(X_2-X_1)^2+(Y_2-Y_1)^2$

COROLLARY:- The distance of the point P(x,y) from the origin O(0,0) is give by $OP = \sqrt{(X-0)^2 + (Y-0)^2}$ ie $OP = \sqrt{X^2 + Y^2}$

2. Section Formula:-

The co-ordinates of the point P(x,y) which divides the line segment joining $A(x_1,y_1)$ and $B(x_2,y_2)$ internally in the ratio m:n are given by .

$$x = \frac{mx_2 + nx_1}{m+n}$$
 $y = \frac{my_2 + ny_1}{m+n}$

3. Midpoint Formula:-

If R is the mid-point, then m₁=m₂ and the coordinates of R are

$$R\left(\begin{array}{c} x_1+x_2 \\ \hline 2 \end{array}\right), \ y_1+y_2 \\ \hline 2 \\ \end{array}$$

4. Co-ordinates of the centroid of triangle:-

The co-ordinates of the centroid of a triangle whose vertices are $P(x_1,y_1)$, $Q(x_2,y_2)$ and

 $R(x_3,y_3)$ are

5. Area of a Triangle:-

The area of the triangle formed by the points $P(x_1,y_1)$ $Q(x_2,y_2)$ and $R(x_3,y_3)$ is the numerical value of the expression.

ar (
$$\Delta$$
PQR)=1/2 $\left[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) \right]$

LEVEL-I

1. Find the distance of the points (6,-6) from origin. Ans- $6\sqrt{2}$ units

2. Show that the point (1,1)(-2,7) and (3,-3) are collinear.

3. Find the distance between the points R(a+b, a-b) and S(a-b, -1-b) Ans- $2\sqrt{a^2+b^2}$ units

4. Find the point on x-axis which is equidistant from (2,-5) and (-2,9). Ans- x=-7

5. Find the area of the triangle whose vertices(-5,-1),(3,-5)(5,2)

Ans-32 sq units

Downloaded from www.studiestoday.com

LEVEL-II

- 1. Show that the points (-2,5), (3,-4) and (7,10) are the vertices of a right angled isosceles triangle.
- 2. Find a relation between x and y if the points (x,y), (1,2) and (7,0) are collinear.

Ans: x+3y = 7

- 3. Find the point on y axis which is equidistance from the points (5,-2) and (-3,2) Ans-(0,-2)
- 4. If the points A(4,3) and B(x,5) are on the circle with the centre O(2,3) find the value of x. Ans-2
- 5. Find the value of 'k' for which the points (7,-2),(5;1) and (3,k) are collinear. Ans-k=4
- 6. Find the area of triangle whose vertices are (2,-4),(-1,0) and (2,4)

 Ans-12 sq.units
- 7. Find the ratio in which line segment joining the points (6,4) and (1,-7) is divided by x-axix also find the coordinates of the points of division.

 Ans 7:4 and (46/11, 0)

LEVEL-III

- 1. Show that the points (7,10),(-2,5) and (3,-4) are the vertices of an isosceles right triangle.
- 2. In what ratio does the line x-y-2=0 divide the line segment joining (3,-1) and (8,9)? Also find the coordinates of the point of intersection.

 Ans-(2:3)(5,3)
- 3. Three consecutive vertices of a parallelogram are (-2,-1),(1,0) and (4,3). Find the coordinates of the fourth vertex.

 Ans-(1,2)
- 4. Show that the points A(5,6); B(1,5); C(2,1) and D(6,2) are the vertices of a square.
- 5. The vertices of a triangle are (-1,3),(1,-1) and (5,1). Find the length of medians through vertices (-1,3) and (5,1) Ans-(5,5)
- 6. Find the value of P for which the points (-5,1),(1,P) and (4,-2) are collinear.

Ans P=-1

SELF EVALUATION QUESTION

- 1. Find the distance between points.
 - a. A(6,0) B(14,0)
 - b. A(0,-5) B(0,10)
 - c. A(0,p) B(P,0)
- 2. Show that the points (-1,-1), (1,1) and $(-\sqrt{3},\sqrt{3})$ are the vertices of an equilateral triangle.
- 3. The line joining the points A(4,-5) and B(4,5) is divided by the point P such that AP/AB=2/5. Find the coordinates of P.
- Find the coordinates of the points which trisect the line segment joining (1,-2) and (-3,4).
- 5. Determine the ratio in which the line 2x+y=4 divides the line segment joining the points (2,-2) and (3,7).
- 6. Find the value of K such that the point (0,2) is equidistant from the points (3,k) and (k,5).
- 7. Prove that the points (4,5),(7,6),(6,3) and (3,2) are the vertices of a parallelogram. Is it a rectangle?

Downloaded from www.studiestoday.com