CO-ORDINATE GEOMETRY

IMPORTANT CONCEPTS

TAKE A LOOK

1. Distance Formula:-

The distance between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by the formula. $A B=V \overline{\left(X_{2}-X_{1}\right)^{2}+\left(Y_{2}-Y_{1}\right)^{2}}$

COROLLARY:- The distance of the point $P(x, y)$ from the origin $0(0,0)$ is give by

$$
O P=v(\bar{X}-0)^{2}+(Y-0)^{2} \quad \text { ie } O P=\sqrt{X^{2}+Y^{2}}
$$

2. Section Formula :-

The co-ordinates of the point $P(x, y)$ which divides the line segment joining $A\left(x_{1}, y_{1}\right)$ and $B(x 2, y 2)$ internally in the ratio $m: n$ are given by .
$x=\frac{m x_{2}+n x_{1}}{m+n} \quad y=\frac{m y_{2}+n y_{1}}{m+n}$
3. Midpoint Formula:-

If R is the mid-point, then $m_{1}=m_{2}$ and the coordinates of R are

$$
R\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

4. Co-ordinates of the centroid of triangle:-

The co-ordinates of the centroid of a triangle whose vertices are $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ and
$R\left(x_{3}, y_{3}\right)$ are

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

5. Area of a Triangle:-

The area of the triangle formed by the points $P\left(x_{1}, y_{1}\right) Q\left(x_{2}, y_{2}\right)$ and $R\left(x_{3}, y_{3}\right)$ is the numerical value of the expression.
$\operatorname{ar}(\triangle P Q R)=1 / 2 \quad\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

LEVEL-I

1. Find the distance of the points $(6,-6)$ from origin.

Ans- $6 \sqrt{ } 2$ units
2. Show that the point $(1,1)(-2,7)$ and $(3,-3)$ are collinear.
3. Find the distance between the points $R(a+b, a-b)$ and $S(a-b,-1-b)$

$$
\text { Ans- } 2 \sqrt{a^{2}+b^{2} \text { units }}
$$

4. Find the point on x-axis which is equidistant from $(2,-5)$ and $(-2,9)$.

Ans- $x=-7$
5. Find the area of the triangle whose vertices $(-5,-1),(3,-5)(5,2)$

Ans-32 sq units

LEVEL-II

1. Show that the points $(-2,5),(3,-4)$ and $(7,10)$ are the vertices of a right angled isosceles triangle.
2. Find a relation between x and y if the points $(x, y),(1,2)$ and $(7,0)$ are collinear.

Ans: $x+3 y=7$
3. Find the point on y axis which is equidistance from the points $(5,-2)$ and $(-3,2)$ Ans-($0,-2$)
4. If the points $A(4,3)$ and $B(x, 5)$ are on the circle with the centre $O(2,3)$ find the value of x. Ans-2
5. Find the value of ' k ' for which the points $(7,-2),(5 ; 1)$ and $(3, k)$ are collinear. Ans- $k=4$
6. Find the area of triangle whose vertices are $(2,-4),(-1,0)$ and $(2,4)$ Ans-12 sq. units
7. Find the ratio in which line segment joining the points $(6,4)$ and $(1,-7)$ is divided by x-axix also find the coordinates of the points of division.

Ans $7: 4$ and $(46 / 11,0)$

LEVEL-III

1. Show that the points $(7,10),(-2,5)$ and $(3,-4)$ are the vertices of an isosceles right triangle.
2. In what ratio does the line $x-y-2=0$ divide the line segment joining $(3,-1)$ and $(8,9)$? Also find the coordinates of the point of intersection.

Ans-(2:3)(5,3)
3. Three consecutive vertices of a parallelogram are $(-2,-1),(1,0)$ and $(4,3)$. Find the coordinates of the fourth vertex.

Ans-(1,2)
4. Show that the points $A(5,6) ; B(1,5) ; C(2,1)$ and $D(6,2)$ are the vertices of a square.
5. The vertices of a triangle are $(-1,3),(1,-1)$ and $(5,1)$. Find the length of medians through vertices $(-1,3)$ and $(5,1)$ Ans-(5,5)
6. Find the value of P for which the points $(-5,1),(1, P)$ and $(4,-2)$ are collinear.

Ans $P=-1$

SELF EVALUATION QUESTION

1. Find the distance between points.
a. $A(6,0) B(14,0)$
b. $A(0,-5) B(0,10)$
c. $A(0, p) B(P, 0)$
2. Show that the points $(-1,-1),(1,1)$ and $(-\sqrt{ } 3, \sqrt{ } 3)$ are the vertices of an equilateral triangle.
3. The line joining the points $A(4,-5)$ and $B(4,5)$ is divided by the point P such that $A P / A B=2 / 5$. Find the coordinates of P.
4. Find the coordinates of the points which trisect the line segment joining $(1,-2)$ and $(-3,4)$.
5. Determine the ratio in which the line $2 x+y=4$ divides the line segment joining the points $(2,-2)$ and $(3,7)$.
6. Find the value of K such that the point $(0,2)$ is equidistant from the points $(3, k)$ and $(k, 5)$.
7. Prove that the points $(4,5),(7,6),(6,3)$ and $(3,2)$ are the vertices of a parallelogram. Is it a rectangle?
