COORDINATE GEOMETRY

LEVEL - I (1 mark)

Q 1) Find the distance between the pairs of points: $(-5,7),(-1,3)$
Sol. Let the given points be $\mathrm{A}(-5,7)$ and $\mathrm{B}(-1,3)$
Using distance formula, we have

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{ }(-1+5)^{2}+(3-7)^{2} \\
& =\sqrt{4^{2}+\left(-4^{2}\right)} \\
& =\sqrt{16+16} \\
& =\sqrt{32}=4 \sqrt{2} \text { units }
\end{aligned}
$$

Q 2) Find the point on y-axis which is equidistant from the points (5,-2) and (-3, 2).

Sol.We know that a point on the y axis is the form $(0, y)$. So, let the points $\mathrm{P}(0, \mathrm{y})$ be equidistant from $\mathrm{A}(5,-2)$ and $\mathrm{B}(-3,2)$. Then

$$
\begin{aligned}
(5-0)^{2}+(-2-y)^{2} & =(-3-0)^{2}+(2-y)^{2} \\
25+4+y^{2}+4 y & =9+4+y^{2}-4 y \\
8 y & =-16 \\
y & =-2
\end{aligned}
$$

Hence, the required point is $(0,-2)$.
Checking :

$$
\begin{aligned}
\mathrm{AP} & =\sqrt{(5-0)^{2}+(-2+2)^{2}}=\sqrt{25+0}=\sqrt{25}=5 \\
\mathrm{BP} & =\sqrt{(-3-0)^{2}+(-2-2)^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5
\end{aligned}
$$

Downloaded from www.studiestoday.com

Q 3)Two vertices of a Triangle are $(3,-5)$ and $(-7,4)$. If its centroid is $(\mathbf{- 2}, \mathbf{1})$, find the third vertex .

Solution: Let the coordinates of the third vertex be (x, y). Then ,
$\frac{x+3-7}{3}=2 \quad$ and $\quad \frac{y-5+4}{3}=-1$
$x-4=6 \quad$ and $\quad y-1=-3$
$x=10 \quad$ and $\quad y=-2$
Hence, third vertex of triangle is ($10,-2$)

Q4)If the mid points of the line segment joining the points $P(6, b-2)$ and $Q(-2,4)$ is ($2,-3$),find the value of b.

Solution: The coordinates of the mid-point of PQ are $\left[\frac{6-2}{2}, \frac{b-2+4}{2}\right]$
i.e. $\left[2, \frac{b+2}{2}\right]$

Equating it to $(2,-3)$

$$
\begin{aligned}
& {\left[\frac{b+2}{2}\right]=-3} \\
& b=-8
\end{aligned}
$$

LEVEL - II (2 marks)

Q 5) The line joining the points $(2,-1)$ and $(5,-6)$ is bisected at P. If P lies on the line $2 x+4 y$ $+k=0$. Find the value of k.

Sol. The coordinates of P are $\left[\frac{2+5}{2}, \frac{-1-6}{2}\right]$, i.e, $\mathrm{P}\left[\frac{7}{2}, \frac{-7}{2}\right]$
Since P lies on the line $2 x+4 y+k=0$

$$
\begin{gathered}
2\left(\frac{7}{2}\right)+4\left(\frac{-7}{2}\right)+k=0 \\
7-14+k=0 \\
k=7
\end{gathered}
$$

Q 6) Find the co-ordinates of the point which divides the line segment joining the points $(6,3)$ and $(-4,5)$ in the ration 3:2 internally.
3 : 2
$\mathrm{A}(6,3) \quad \mathrm{P}(\mathrm{x}, \mathrm{y}) \quad \mathrm{B}(-4,5)$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ divides the line segment joining $\mathrm{A}(6,3)$ and $\mathrm{B}(-4,5)$ in the ratio $3: 2$

$$
\begin{aligned}
P(x, y) & =P\left[\frac{3(-4)+2(6),}{3+2} \frac{3(5)+2(6)}{3+2}\right] \\
& =P\left[\frac{-12+12}{5}, \frac{15+12}{5}\right] \\
& =P\left[\frac{0}{5}, \frac{21}{5}\right]
\end{aligned}
$$

Therefore, the coordinates of the point P are $\left(0, \frac{21}{5}\right)$

Q7)In each of the following find the value of ' k ', for which the points are collinear. (7, - 2), (5, 1), (3, - k)

Solution -: For collinear points, area of triangle formed by them is zero
Therefore,for points $(7,-2)(5,1)$, and $(3, k)$, area $=0$

$$
\begin{aligned}
& \frac{1}{2}[7\{1-k\}+5\{k-(-2)\}+3\{(-2)-1\}]=0 \\
& 7-7 k+5 k+10-9=0 \\
& -2 k+8=0 \\
& k=4
\end{aligned}
$$

Q8)Find the coordinates of the points of trisection of the line segment joining the points $A(2,-2)$ and $B(-7,4)$.

Solution -: Let P and Q be the points of trisection of AB

Therefore, $\mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$

(2,-2)

P divides AB internally in the ratio 1:2.
So, the coordinates of P , by applying the section formula are

$$
\begin{gathered}
\frac{1(-7)+2(2)}{1+2}, \frac{1(4)+2(-2)}{1+2} \\
\text { i.e., }(-1,0)
\end{gathered}
$$

now, Q also divides AB internally in the ratio 2:1 . so, the coordinates of Q are

$$
\frac{2(-7)+1(2)}{1+2}, \frac{2(4)+1(-2)}{1+2}
$$

i.e. $(-4,2)$

LEVEL-III (3 marks)

Q 9) If the vertices of a triangle are ($1, k),(4,-3),(-9,7)$ and its area is 15 sq units, find the value(s) of k.

Sol. Let $A(1, k), B(4,-3)$ and $C(-9,7)$ be the vértices of triangle

$$
\begin{aligned}
& \text { Area of } \Delta A B C=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{1}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[1(-3-7)+4(7-\mathrm{k})+(-9)(\mathrm{k}+3)]=15 \\
& -10+28-4 \mathrm{k}-9 \mathrm{k}-27=30 \mathrm{~s} \\
& -9-13 \mathrm{k}=30 \\
& -13 \mathrm{k}=30+9 \\
& \mathrm{k}=\frac{39}{-13} \\
& \mathrm{k}=-3
\end{aligned}
$$

10) Find the point on the x-axis which is equidistant from ($2,-5$) and ($-2,9$).

Downloaded from www.studiestoday.com

Sol. We have to find a point on x-axis. Therefore, its y-coordinate will be 0 .
Let the point on x-axis be $(x, 0)$
Distance between $(x, 0)$ and $(2,-5)=\sqrt{(x-2)^{2}+(0-(-5))^{2}}=\sqrt{(x-2)^{2}+(5)^{2}}$
Distance between $(x, 0)$ and $(-2,9)=\sqrt{(x-(-2))^{2}+(0-(-9))^{2}}=\sqrt{(x+2)^{2}+(9)^{2}}$
By the given condition, these distances are equal in measure.

$$
\begin{aligned}
& \sqrt{(x-2)^{2}+(5)^{2}}=\sqrt{(x+2)^{2}+(9)^{2}} \\
& (x-2)^{2}+25=(x+2)^{2}+81 \\
& x^{2}+4-4 x+25=x^{2}+4+4 x+81 \\
& 8 x=25-81 \\
& 8 x=-56 \\
& x=-7
\end{aligned}
$$

11) Determine the ratio in which the point $P(m, 6)$ divides the join of $A(-4,3)$ and $B(2,8)$.

Let required ratio $=\mathrm{k}: 1$
Using section formula $\left(\frac{m x_{1}+n x_{2}}{m+n}, \frac{m y_{1}+n y_{2}}{m+n}\right)$
For y-coordinate $6=\left(\frac{8 k+3}{k+1}\right)$

$$
\begin{gathered}
6(k+1)=8 k+3 \\
6 k+6=8 k+3 \\
6 k-8 k=3-6 \\
-2 k=-3 \\
k=3 / 2
\end{gathered}
$$

$$
\text { Therefore required ratio }=3: 2
$$

12) Find the value of k so that the points $A(-2,3), B(3,-1)$ and $C(5, k)$ are collinear.

Sol. Here, $\quad x_{1}=-2, x_{2}=3, x_{3}=5 ; y_{1}=3, y_{2}=-1, y_{3}=k$

$$
\begin{gathered}
\text { Area of } \Delta \mathrm{ABC}=\frac{1}{2}\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right] \\
=\frac{1}{2}[-2(-1-\mathrm{k})+3(\mathrm{k}-3)+5(3+1)] \\
=\frac{1}{2}[2+2 \mathrm{k}+3 \mathrm{k}-9+20] \\
=\frac{1}{2}[5 \mathrm{k}+13]
\end{gathered}
$$

Now, the three points will be collinear
If the area of $\Delta \mathrm{ABC}=0$, i.e, if $\frac{1}{2}[5 k+13]=0$

$$
\begin{gathered}
5 k+13=0 \\
k=-\frac{13}{5}
\end{gathered}
$$

LEVEL IV (4 marks)

Q13)Find the value of y for which the distance between the points $P(2-3)$ and $Q(10, y)$ is 10 units.

Sol. Given $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10, \mathrm{y})$

$$
\begin{gathered}
\mathrm{P} \text { units } \mathrm{Q} \\
\mathrm{PQ}=10 \\
\mathrm{PQ}^{2}=10^{2}=100
\end{gathered}
$$

Using distance formula

$$
\begin{gathered}
(10-2)^{2}+(y-(-3))^{2}=100 \\
8^{2}+(y+3)^{2}=100 \\
64+y^{2}+6 y+9=100 \\
y^{2}+6 y-27=0 \\
y^{2}+9 y-3 y-27=0
\end{gathered}
$$

$y(y+9)-3(y+9)=0$

$$
\begin{array}{r}
(y+9)(y-3)=0 \\
y+9=0 \text { or } y-3=0
\end{array}
$$

Either $y=-9 \quad$ or $\mathrm{y}=3$

Hence the required value of y can be -9 or 3

Q 14) If $(\mathbf{1}, 2),(4, y),(x, 6)$ and $(3,5)$ are the vertices of a parallelogram taken in order, find x and y.

Let $(1,2),(4, y),(x, 6)$, and $(3,5)$ are the coordinates of A, B, C, D vertices of a parallelogram $A B C D$. Intersection point O of diagonal $A C$ and $B D$ also divides these diagonals. Therefore, O is the mid-point of AC and BD.
If O is the mid-point of $A C$, then the coordinates of O are

$$
\left(\frac{1+x}{2}, \frac{2+6}{2}\right) \Rightarrow\left(\frac{x+1}{2}, 4\right)
$$

If O is the mid-point of BD , then the coordinates of O are

$$
\left(\frac{4+3}{2}, \frac{5+y}{2}\right) \Rightarrow\left(\frac{7}{2}, \frac{5+y}{2}\right)
$$

Since both the coordinates are of the same point O,

$$
\begin{aligned}
& \therefore \frac{x+1}{2}=\frac{7}{2} \text { and } 4=\frac{5+y}{2} \\
& \Rightarrow x+1=7 \text { and } 5+y=8 \\
& \Rightarrow x=6 \text { and } y=3
\end{aligned}
$$

Q15.Do the points $(3,2),(-2,-3)$ and $(2,3)$ form a triangle? If so, name the type of triangle formed.

Solution.-: Applying the distance formula to find the distances PQ , QR , and PR , where $\mathrm{P}(3,2)$, $\mathrm{Q}(-2,-3)$ and $\mathrm{R}(2,3)$ then

$$
\begin{aligned}
& \mathrm{PQ}=\sqrt{(-2-3)^{2}+(-3-2)^{2}} \\
& \quad=\sqrt{(-5)^{2}+(-5)^{2}}=\sqrt{25+25}=\sqrt{50} \\
& \mathrm{QR}=\sqrt{(2+2)^{2}+(3+3)^{2}} \\
& \quad=\sqrt{(4)^{2}+(6)^{2}}=\sqrt{16+36}=\sqrt{52} \\
& \mathrm{PR}=\sqrt{(2-3)^{2}+(3-2)^{2}} \\
& \quad=\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{1+1}=\sqrt{2}
\end{aligned}
$$

Since the sum of any two of these distances is greater than the third distance, the points P, Q and R form a triangle.

Also, $\mathrm{PQ}^{2}+\mathrm{PR}^{2}=\mathrm{QR}^{2}$
By the converse of Pythagoras Theorem, we have $\angle \mathrm{P}=90^{\circ}$
Therefore, PQR is a right triangle.

Q16.Do the points $(3,2),(-2,-3)$ and $(2,3)$ form a triangle? If so, name the type of triangle formed.

Solution.-: Applying the distance formula to find the distances PQ, QR, and PR , where $\mathrm{P}(3,2)$, $\mathrm{Q}(-2,-3)$ and $\mathrm{R}(2,3)$ then

$$
\begin{aligned}
& \mathrm{PQ}=\sqrt{(-2-3)^{2}+(-3-2)^{2}} \\
& \quad=\sqrt{(-5)^{2}+(-5)^{2}}=\sqrt{25+25}=\sqrt{50} \\
& \mathrm{QR}=\sqrt{(2+2)^{2}+(3+3)^{2}} \\
& \quad=\sqrt{(4)^{2}+(6)^{2}}=\sqrt{16+36}=\sqrt{52} \\
& \mathrm{PR}=\sqrt{(2-3)^{2}+(3-2)^{2}} \\
& \quad=\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{1+1}=\sqrt{2}
\end{aligned}
$$

Since the sum of any two of these distances is greater than the third distance, the points P, Q and R form a triangle.

Also, $\mathrm{PQ}^{2}+\mathrm{PR}^{2}=\mathrm{QR}^{2}$
By the converse of Pythagoras Theorem, we have $\angle \mathrm{P}=90^{\circ}$
Therefore, PQR is a right triangle.

