Downloaded from www.studiestoday.com

CHAPTER 5

CIRCLE

KEY POINTS

1. Tangent to a Circle: It is a line that intersects the circle at only one point.
2. There is only one tangent at a point of the circle.
3. The proofs of the following theorems can be asked in the examination:
(i) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
(ii) The lengths of tangents drawn from an external point to a circle are equal.

MULTIPLE CHOICE QUESTIONS

1. In the given fig. $1 P Q$ is tangent then $\angle P O Q+\angle Q P O$ is equal to

Fig. 1
(a) 120°
(b) 90°
(c) 80°
(d) 100°
2. If $P Q$ is a tangent to a circle of radius 5 cm and $P Q=12 \mathrm{~cm}, Q$ is point of contact, then $O P$ is
(a) 13 cm
(b) 17 cm
(c) 7 cm
(d) $\sqrt{119} \mathrm{~cm}$
3. In the given fig. $2 P Q$ and $P R$ are tangents to the circle, $\angle Q O P=70^{\circ}$, then $\angle Q P R$ is equal to

Fig. 2
(a) 35°
(b) 70°
(c) 40°
(d) 50°
4. In the given fig. $3 P Q$ is a tangent to the circle, $P Q=8 \mathrm{~cm}, O Q=6 \mathrm{~cm}$ then the length of $P S$ is

Fig. 3
(a) 10 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm
5. In the given fig. $4 P Q$ is tangent to outer circle and $P R$ is tangent to inner circle. If $P Q=4 \mathrm{~cm}, O Q=3 \mathrm{~cm}$ and $O R=2 \mathrm{~cm}$ then the length of $P R$ is

Fig. 4
(a) 5 cm
(b) $\sqrt{21} \mathrm{~cm}$
(c) 4 cm
(d) 3 cm
6. In the given fig. $5 P, Q$ and R are the points of contact. If $A B=4 \mathrm{~cm}, B P$ $=2 \mathrm{~cm}$ then the perimeter of $\triangle A B C$ is

Fig. 5
(a) 12 cm
(b) 8 cm
(c) 10 cm
(d) 9 cm
7. In the given fig. 6 the perimeter of $\triangle A B C$ is

Fig. 6
(a) 10 cm
(b) 15 cm
(c) 20 cm
(d) 25 cm
8. The distance between two tangents parallel to each other to a circle is 12 cm . The radius of circle is
(a) 13 cm
(b) 6 cm
(c) 10 cm
(d) 8 cm
9. In the given fig. 7 a circle touches all sides of a quadrilateral. If $A B=6$ $\mathrm{cm}, B C=5 \mathrm{~cm}$ and $A D=8 \mathrm{~cm}$. Then the length of side $C D$ is

Fig. 7
(a) 6 cm
(b) 8 cm
(c) 5 cm
(d) 7 cm
10. In a circle of radius 17 cm , two parallel chords are drawn on opposite sides of diameter. The distance between two chords is 23 cm and length of one chord is 16 cm , then the length of the other chord is
(a) 34 cm
(b) 17 cm
(c) 15 cm
(d) 30 cm
11. In the given fig. $8 P$ is point of contact then $\angle O P B$ is equal to

Fig. 8
(a) 50°
(b) 40°
(c) 35°
(d) 45°
12. In the given fig. $9 P Q$ and $P R$ are tangents to the circle with centre O, if $\angle Q P R=45^{\circ}$ then $\angle Q O R$ is equal to

Fig. 9
(a) 90°
(b) 110°
(c) 135°
(d) 145°
13. In the given fig. $10 O$ is centre of the circle, $P A$ and $P B$ are tangents to the circle, then $\angle A Q B$ is equal to

Fig. 10
(a) 70°
(b) 80°
(c) 60°
(d) 75°
14. In the given fig. $11 \triangle A B C$ is circumscribed touching the circle at P, Q and R. If $A P=4 \mathrm{~cm}, B P=6 \mathrm{~cm}, A C=12 \mathrm{~cm}$, then value of $B C$ is

Fig. 11
(a) 6 cm
(b) 14 cm
(c) 10 cm
(d) 18 cm
15. In the given fig. $12 \triangle A B C$ is subscribing a circle and P is mid point of side $B C$. If $A R=4 \mathrm{~cm}, A C=9 \mathrm{~cm}$, then value of $B C$ is equal to

Fig. 12
(a) 10 cm
(b) 11 cm
(c) 8 cm
(d) 9 cm

SHORT ANSWER TYPE QUESTIONS

16. In two concentric circles, prove that all chords of the outer circle which touch the inner circle are of equal length.
17. An incircle is drawn touching the equal sides of an isosceles triangle at E and F. Show that the point D, where the circle touches the third side is the mid point of that side.
18. The length of tangent to a circle of radius 2.5 cm from an external point P is 6 cm . Find the distance of P from the nearest point of the circle.
19. $T P$ and $T Q$ are the tangents from the external point of a circle with centre O. If $\angle O P Q=30^{\circ}$, then find the measure of $\angle T Q P$.
20. In the given fig. $13 A P=4 \mathrm{~cm}, B Q=6 \mathrm{~cm}$ and $A C=9 \mathrm{~cm}$. Find the semi perimeter of $\triangle A B C$.

Fig. 13
21. In the given fig. $14 O P$ is equal to the diameter of the circle with centre O. Prove that $\triangle A B P$ is an equilateral triangle.

Fig. 14
22. In the given fig. (15) a semicircle is drawn outside the bigger semicircle. Diameter BE of smaller semicircle is half of the radius BF of the bigger semicircle. If radius of bigger semicircle is $4 \sqrt{3} \mathrm{~cm}$. Find the length of the tangent $A C$ from A on a smaller semicircle.

Fig. 15
23. A circle is inscribed in a $\triangle A B C$ having sides $8 \mathrm{~cm}, 10 \mathrm{~cm}$ and 12 cm find $A D, B C, C F$.

Fig. 16
24. On the side $A B$ as diameter of a right angled triangle $A B C$ a circle is drawn intersecting the hypotenuse $A C$ in P. Prove that $P B=P C$.
25. Two tangents $P A$ and $P B$ are drawn to a circle with centre O from an external point P. Prove that $\angle A P B=2 \angle O A B$

Fig. 17
26. If an isosceles triangle $A B C$ in which $A B=A C=6 \mathrm{~cm}$ is inscribed in a circle of radius 9 cm , find the area of the triangle.
27. In the given fig. (18) $A B=A C, D$ is the mid point of $A C, B D$ is the diameter of the circle, then prove that $A E=1 / 4 A C$.

Fig. 18
28. In the given fig. (19) radii of two concentric circles are 5 cm and 8 cm . The length of tangent from P to bigger circle is 15 cm . Find the length of tangent to smaller circle.

Fig. 19
29. An incircle is drawn touching the sides of a right angled triangle, the base and perpendicular of the triangle are 6 cm and 2.5 cm respectively. Find the radius of the circle.
30. In the given fig. (20) $A B=13 \mathrm{~cm}, B C=7 \mathrm{~cm}$. $A D=15 \mathrm{~cm}$. Find $P C$.

Fig. 20
31. In the given fig. (21) find the radius of the circle.

Fig. 21
32. In the given fig. (22) if radius of circle $r=3 \mathrm{~cm}$. Find the perimeter of $\triangle \mathrm{ABC}$.

Fig. 22
33. A circle touches the side $B C$ of a $\triangle A B C$ at P and $A B$ and $A C$ produced at Q and R respectively. Prove that $A Q$ is half the perimeter of $\triangle A B C$.
34. In the given fig. (23) $X P$ and $X Q$ are tangents from X to the circle with centre O. R is a point on the circle. Prove that
$X A+A R=X B+B R$.

Fig. 23

LONG ANSWER TYPE QUESTIONS

35. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

Rider :

1. Prove that in two concentric circles the chord of the larger circle which touches the smaller circle is bisected at the point of contact.
2. PT is a tangent to the circle with centre O and T is point of contact. If $O T=6 \mathrm{~cm}, \mathrm{OP}=10 \mathrm{~cm}$ find the length of tangent PT.
3. In the given fig. (24) $P Q$ is tangent and $P B$ is diameter. Find the value of x and y.

Fig. 24
4. In the given fig. (25) AC is diameter of the circle with centre O and A is point of contact, then find x.

Fig. 25
36. Prove that the length of tangents, drawn from an external point to a circle are equal.

Rider :

1. In the given fig. (26) PA and PB are tangents from point P. Prove that $K N=A K+B N$.

Fig. 26
2. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which is tangent to the smaller circle.
3. In the given fig. (27) PA and PB are tangents to the circle with centre O. Prove that OP is perpendicular bisector of $A B$.

Fig. 27
4. In the given fig. (28) PQ is chord of length 6 cm of the circle of radius 6 cm . TP and TQ are tangents. Find $\angle \mathrm{PTQ}$.

Fig. 28
ANSWERS

1. b
2. c
3. b
4. c
5. d
6. a
7. a
8. a
9. 4 cm
10. 15 cm
11. 4 cm
12. Radius $=3 \mathrm{~cm}$.
13. $2 \sqrt{ } 66 \mathrm{~cm}$
14. 5 cm
15. 32 cm
35.(3) $x=35^{\circ}, y=55^{\circ}$
36.(2) 8 cm
16. d
17. d
18. a
19. b
20. a
21. c
22. b
23. 30°
24. 60°
25. 12 cm
26. $\mathrm{AD}=7 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm}, \mathrm{CF}=3 \mathrm{~cm}$
27. $8 \sqrt{ } 2 \mathrm{~cm}^{2}$
28. 1 cm .
29. 11 cm .
35.(2) 8 cm
35.(4) 40°
36.(4) 120°
