

CIRCLES

1. Prove that the parallelogram circumscribing a circle is rhombus.

Ans Given: ABCD is a parallelogram circumscribing a circle.

To prove : - ABCD is a rhombus

or

Proof: Since the length of tangents from external are equal in length

$$AS = AR$$
(1)

$$BQ = BR \qquad \dots (2)$$

$$QC = PC$$
(3)

Adding (1), (2), (3) & (4).

$$AS + SD + BQ + QC = AR + BR + PC + DP$$

$$AD + BC = AB + DC$$

$$AD + AD = AB + AB$$

Singo \underline{BGP} AD & \underline{DC} = AB (opposite sides of a parallelogram are equal)

$$2AD = 2AB$$

$$\therefore$$
 AD = AB(5)

BC = AD (opposite sides of a parallelogram)

$$DC = AB \int \dots (6)$$

From (5) and (6)

$$AB = BC = CD = DA$$

Hence proved

2. A circle touches the side BC of a triangle ABC at P and touches AB and AC when produced at Q and R respectively as shown in figure.

Show that AQ= $\frac{1}{2}$ (perimeter of triangle ABC)

в Р С

Q R

Ans: Since the length of tangents from external point to a circle are equal.

AQ = AR
BQ = BP
PC = CR
Since AQ = AR
AB + BQ = AC + CR
$$\therefore AB + BP = AC + PC \text{ (Since BQ = BP \& PC = CR)}$$
Perimeter of $\triangle ABC = AB + AC + BC$

$$= AB + BP + PC + AC$$

$$= AQ + PC + AC \text{ (Since AB + BP = AQ)}$$

$$= AQ + AB + BP \text{ (Since PC + AC = AB + BP)}$$

$$= AQ + AQ \text{ (Since AB + BP = AQ)}$$
Perimeter of $\triangle ABC = 2AQ$

$$\therefore AQ = \frac{1}{2} \text{ (perimeter of triangle ABC)}$$

3. In figure, XP and XQ are tangents from X to the circle with centre O. R is a point on the circle. Prove that XA+AR=XB+BR

Ans: Since the length of tangents from external point to a circle are equal

$$XP = XQ$$
 $PA = RA$
 $BQ = BR$
 $XP = XQ$
 $\Rightarrow XA + PA = XB + BQ$
 $\Rightarrow XA + AR = XB + BR (\Theta PA = AR & BQ = BR)$

Hence proved

4. In figure, the incircle of triangle ABC touches the sides BC, CA, and AB at D, E, and F respectively. Show that AF+BD+CE=AE+BF+CD= $\frac{1}{2}$ (perimeter of triangle ABC),

Ans: Since the length of tangents from an external point to are equal

$$AF = AE$$

$$FB = BD$$

$$EC = CD$$

Perimeter of
$$\triangle ABC$$
 = AB + BC+ AC
= AF + FB + BD + DC + AE + EC
= AF + BD + BD + CE + AF + CE
(Θ AF=AE, FB=BD, EC=CD)
= AF + AF + BD + BD + CE + CE

Perimeter of
$$\triangle ABC = 2(AF + BD + CE)$$

$$\therefore AF + BD + CE = \frac{1}{2} \text{ (perimeter of } \triangle ABC) \dots \dots \dots (1)$$
Perimeter of $\triangle ABC = AB + BC + AC$

$$= AF + FB + BD + DC + AE + EC$$

$$= AE + BF + BF + CD + AE + CD$$

Perimeter of
$$\triangle ABC = 2(AE + BF + CD)$$

 $\therefore AE + BF + CD = \frac{1}{2}$ (perimeter of $\triangle ABC$)(2)

From (1) and (2)

AF + BD + CE = AE + BF + CD =
$$\frac{1}{2}$$
 (perimeter of \triangle ABC)

 $(\Theta AF = AE, FB = BD, EC = CD)$ = AE + AE + BF + BF + CD + CD

5. A circle touches the sides of a quadrilateral ABCD at P, Q, R and S respectively. Show that the angles subtended at the centre by a pair of opposite sides are supplementary.

Ans: To prove :-
$$\angle AOB + \angle DOC = 180^{\circ}$$

 $\angle BOC + \angle AOD = 180^{\circ}$

Proof: - Since the two tangents drawn from an external point to a circle subtend equal angles at centre.

∴ ∠1 = ∠2, ∠3 = ∠4, ∠5 = ∠6, ∠7 = ∠8
but ∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 + ∠8 =
$$360^{\circ}$$

2(∠2 + ∠3 + ∠6 + ∠7) = 360°
∠2 + ∠3 + ∠6 + ∠7 = 360°
∴ ∠AOB + ∠DOC = 180°

Similarly

$$∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 + ∠8 = 360^{\circ}$$

 $2(∠1 + ∠8 + ∠4 + ∠5) = 360^{\circ}$
 $∠1 + ∠8 + ∠5 = 180^{\circ}$
∴∠BOC + ∠AOD = 180°
Hence proved

6. In figure, O is the centre of the Circle .AP and AQ two tangents drawn to the circle. B is a point on the tangent QA and \angle PAB = 125°, Find \angle POQ. (Ans: 125°)

Ans: Given $\angle PAB = 125^{\circ}$

To find : $\neg \angle POQ = ?$ Construction : \neg Join PQ

Proof : $-\angle PAB + \angle PAQ = 180^{\circ}$ (Linear pair)

 $\angle PAQ + 125^{\circ} = 180^{\circ}$

 $\angle PAQ = 180^{\circ} - 125^{\circ}$

 $\angle PAQ = 55^{\circ}$

Since the length of tangent from an external point to a circle are equal.

PA = QA

∴ From ∆PAQ

 $\angle APQ = \angle AQP$

In
$$\triangle$$
APQ \angle APQ + \angle AQP + \angle PAQ = 180° (angle sum property) \angle APQ + \angle AQP + 55° = 180° $2\angle$ APQ = 180° - 55° (Θ \angle APQ = $2\angle$ AQP) $2\angle$ APQ = $2\angle$ APQQ = $2\angle$ APQ = $2\angle$ APQQ = $2\angle$ A

$$\angle POQ = 125^{\circ}$$

 $\therefore \angle POQ = 125^{\circ}$

7. Two tangents PA and PB are drawn to the circle with center O, such that ∠APB=120°. Prove that OP=2AP.

Ans: Given:
$$- \angle APB = 120^{\circ}$$

Construction: $-Join OP$
To prove: $-OP = 2AP$
Proof: $- \angle APB = 120^{\circ}$
 $\therefore \angle APO = \angle OPB = 60^{\circ}$
 $Cos 60^{\circ} = \frac{AP}{OP}$
 $\frac{1}{2} = \frac{AP}{OP}$
 $\therefore OP = 2AP$
Hence proved

- 8. From a point P, two tangents PA are drawn to a circle with center O. If OP=diameter of the circle show that triangle APB is equilateral.
- **Ans:** PA=PB (length of tangents from an external point From Δ OAP,

$$sin∠APO = \frac{OA}{OP} = \frac{1}{2}$$
Since OP = 2OA (Since OP=Diameter)
∴ ∠APO = 30°
$$since Δ APO \cong ΔBPO$$
∠APO = ∠BPO = 30°
∴ ∠APB = 60°
$$ΔAPB is equilateral$$

9. In the given fig OPQR is a rhombus, three of its vertices lie on a circle with centre O If the area of the rhombus is $32\sqrt{3}$ cm². Find the radius of the circle.

Ans: QP = OR
OP = OQ

$$\therefore \Delta OPQ$$
 is a equilateral Δ .
area of rhombus = 2 (ar of ΔOPQ)
 $32 \sqrt{3} = 2 \left(\frac{\sqrt{3}r^2}{4} \right)$

$$32 \sqrt{3} = \frac{\sqrt{3}r^2}{2}$$

$$r^2 = 32 \times 2 = 64$$
⇒ $r = 8$ cm
∴ Radius = 8cm

10. If PA and PB are tangents to a circle from an outside point P, such that PA=10cm and ∠APB=60°. Find the length of chord AB.

Self Practice

11. The radius of the in circle of a triangle is 4cm and the segments into which one side is divided by the point of contact are 6cm and 8cm. Determine the other two sides of the triangle.

(Ans: 15, 13)

Ans:
$$a = BC = x + 8$$

 $b = AC = 6 + 8 = 14cm$
 $c = AB = x + 6$
Semi – perimeter = $\frac{a+b+c}{2}$
 $= \frac{BC + AC + AB}{2}$
 $= \frac{x+8+14+x+6}{2}$
 $= \frac{2x+28}{2}$
 $= x + 14$

Area of
$$\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$$
 on substituting we get $= \sqrt{(x+14)(6)(x)(8)}$

12. A circle is inscribed in a triangle ABC having sides 8cm, 10cm and 12cm as shown in the figure. Find AD, BE and CF. (Ans:7cm,5cm,3cm)

Self Practice

13. Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre.

Since
$$\triangle$$
 ADF \cong \triangle DFC

 \angle ADF = \angle CDF

 \therefore \angle ADC = 2 \angle CDF

Similarly we can prove \angle CEB = 2 \angle CEF

Since $l \parallel m$
 \angle ADC + \angle CEB = 180°

 \Rightarrow 2 \angle CDF + 2 \angle CEF = 180°

$$\Rightarrow \angle CDF + \angle CEF = 90^{\circ}$$
In \triangle DFE
$$\angle DFE = 90^{\circ}$$

14. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Ans: Same as question No.5

15. QR is the tangent to the circle whose centre is P. If QA || RP and AB is the diameter, prove that RB is a tangent to the circle.

Self Practice