ARITHMETIC PROGRESSION

Important concepts:

Take a look:

Sequence: - A sequence is an arrangement of numbers in a definite order according to some rule.
Progression: A sequence that follow a definite pattern is called progression.
Arithmetic Progression (A.P.): A sequence in which each term differs from its preceding term by a constant is called an arithmetic progression. This constant is called common difference of the A.P. It is denoted by ' d '.
General form of an A.P.: The general form of an A.P. is
$a, a+d, a+2 d, a+3 d$ \qquad
$\mathrm{n}^{\text {th }}$ term of an A.P. : If ' a ' is the first term and ' d ' is the common difference than [$\left.a_{n}=\mathbf{a + (n - 1) d}\right]$
$\underline{n}^{\text {th }}$ term from the last of an A.P.: $\left[a_{n}=\mathbf{1}+(\mathbf{n}-\mathbf{1}) \mathbf{d}\right]$

$$
\begin{aligned}
& \text { where } I=\text { last term. } \\
& \qquad d=\text { c.d. }
\end{aligned}
$$

Sum of n terms of an A.P.: -

$$
\begin{aligned}
\mathrm{Sn} & =\frac{n}{2[2 a+(n-1) d]} \\
\text { Or } \mathrm{Sn} & =\frac{n}{2(a+l)} . \text { Where } \mathrm{I}=\text { last term. }
\end{aligned}
$$

Common difference: $\left[\mathrm{d}=a_{k}-a_{k-1}\right]$

- Common difference may be +ve , - ve or zero.
$\mathrm{n}^{\text {th }}$ term: If Sn is given then $\left[a_{n}=s_{n}-s_{n-1}\right]$
Level - I

1. Is the progression $3,9,15,21$ \qquad is in A.P.?
2. Find the first term and common difference of the A.P.
1,5,9,13,17.
Ans: $a=1, d=4$
3. Find the $10^{\text {th }}$ term of the A.P. $63,58,53,48$ \qquad
4. Find the $8^{\text {th }}$ term from the end of the A.P. $7,10,13$. .184.

Ans : 163
5. In the given A.P. find the missing term :
$\sqrt{2},[], 5 \sqrt{2}$
Ans : $3 \sqrt{2}$
6. Find the sum of first $24^{\text {th }}$ terms of the A.P.:

5,8,11,14 \qquad Ans : 948

1. Which term of the A.P. $84,80,76$, \qquad is zero.

Ans : $n=22$
2. Find the sum of odd numbers between 0 and 50 .

Ans : 625
3. Which term of the sequence $48,43,38,33$. \qquad is the first-ve term.
4. if the no. $4 p+1,26,10 p-5$ are in A.P. .Find the value of p.

Ans : $\mathrm{p}=4$
5. If $9^{\text {th }}$ term of an A.P. is zero, prove that its $29^{\text {th }}$ term is double the $19^{\text {th }}$ term.

Level-3

1. The $7^{\text {th }}$ term of an A.P. is 32 and its $13^{\text {th }}$ term is 62 . Find the A.P.

Ans : 2, 7,12, \qquad
2. Find the sum of first $25^{\text {th }}$ term of an A.P. whose $n^{\text {th }}$ term is given by $\mathrm{Tn}=2-3 n$.

Ans: -925
3. If m times the $m^{\text {th }}$ term of an A.P. is equal to n times its $n^{\text {th }}$ term; find $(m+n)^{\text {th }}$ term. Ans: 0
4. Which term of the A.P. $3,10,17$, \qquad .will be 84 more than its $13^{\text {th }}$ term.

Ans : $25^{\text {th }}$
5. If the sum of first $n, 2 n$ and $3 n$ terms of an A.P. be $S_{\mathbf{1}}, S_{\mathbf{2}}$ and $S_{\mathbf{3}}$ respectively then prove that

$$
S_{3}=3\left(S_{2}-S_{1}\right)
$$

Level - 4

1. How many multiple of 4 lie between 10 and 250 ? Also find their sum.

$$
\text { Ans : } n=60 s_{60}=7800
$$

2. The first and last term of an A.P. is 8 and 350 respectively. If its common difference is 9 , how many terms are there and what is their sum?

Ans: $\mathrm{n}=39, S_{39}=6981$
3. The sum of first 15 terms of an A.P. is 105 and the sum of the next 15 terms is 780 . Find the first 3 terms of the A.P. :

Ans : $-14,-11,-8$.
4. If the sum of first $\mathrm{n}^{\text {th }}$ terms of an A.P. is given by $s_{n}=\mathbf{4} n^{\mathbf{2}}-3 \mathrm{n}$, find the $\mathrm{n}^{\text {th }}$ term of the A.P.

Ans : 8n-7

Self Evaluation

1. Find the common difference and write the next two terms of the A.P. 8,3,-2,-7.
2. Which term of the A.P. 4,9,14 \qquad is 89 ?

Also find the sum.
3. Find the sum of all two digits positive numbers divisible by 3 .
4. The sum of n terms of an A.P. is $3 n^{2}+5 n$.find the A.P. Also find $16^{\text {th }}$ term.
5. The ratio of the sum of n and m terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of the $m^{\text {th }}$ term and $n^{\text {th }}$ term is $(2 m-1):(2 n-1)$.

