ARITHMETIC PROGRESSIONS

EASY SCORING IMPORTANT QUESTIONS

LEVEL- 1 (1 Marks)

- Q1) For the A.P 3,1,-1,-3...., Write the first term and common difference?
- Sol. Here, first term 'a'=3 & common difference 'd=1-3 =-2
- Q2) Find the 10th Term of the A.P, whose first term is 2 and common difference is 5
- Sol Here, first term 'a'=2 & common difference 'd'=5.

$$a_n$$
 =a+(n-1)×d Or, a_{10} =2+ (10-1)×5 =2+45

=47

Q3. Write the formula to find the sum of first n terms of an AP whose first term is a and common difference is d

Sol.
$$s_n = \frac{n}{2} \{2a + (n+1)d\}$$

- Q4. Write the sum of first n terms of an AP whose first term is a and last term is I
- Sol. $S_n = \frac{n}{2} \{a + l\}$

LEVEL- 2 (2 Marks)

Q1. Find the 8^{th} term of an A.P. 7,10,13,....?

Sol. Here
$$a = 7$$
, $d = 10 - 7 = 3$

Therefore $a_8 = a+7d$

= 7 + 7x3

= 7 + 21

= 28

Q2. Find the sum of first 10 terms of the A.P 2,5,8,11.....?

Sol)
$$a = 2$$
; $d = 5-2 = 3$ & $n = 10$

$$S_{10} = ?$$

$$S_n = \frac{n}{2}[2a + (n-1) \times d]$$

$$or, \quad S_{10} = \frac{10}{2}[2 \times 2 + (10-1) \times 3]$$

$$or, \quad S_{10} = 5[4+9 \times 3]$$

$$or, \quad S_{10} = 5[4+27]$$

$$or, \quad S_{10} = 5 \times 31$$

$$or, \quad S_{10} = 155$$

Q3. For what values of n the nth term of AP is 63, 65, 67, and 3,10,17,..... are equal

Sol. For AP 1: 63, 65, 67,
$$a = 63$$
, $d = 65 - 63 = 2$

For A P 2:
$$3,10,17,...$$
 A = 3, D = $10 - 3 = 7$

Let nth term is equal \Rightarrow a_n = A_n

$$a+(n-1)d = A+(n-1)D$$

$$63+(n-1)2 = 3+(n-1)7$$
 => $63 - 3 = (n-1)7 - (n-1)2$

n=13

Q 4 Find the 20^{th} term from the last term of an AP 3, 8,13, 253 .

For reverse AP : A = 253 D = -5

$$A_{20} = A + (20-1)D$$

$$A_{20} = 253 + 19 x(-5)$$

$$A_{20}$$
= 253 $-$ 95 = 158

LEVEL- 3 (3 Marks)

Q1) Which term of the A.P: 21,18,15,.... is -81?

```
Sol) Here a = 21, d = 18-21 = -3
  Let n^{th} term = -81
                 a_n = -81
                  a+(n-1)\times d = -81
                  or, 21+(n-1)(-3)=-81
                  or, (n-1)(-3) = -81-21
                  or, (n-1)=-102/-3
                  or, (n-1)=34
                  Or, n=35
                   Hence 35^{th} term is -81.
Q 2 Determine the A.P whose 3^{rd} term is 5 and 7^{th} term is 9?
Sol) Let first term of A.P = a & common difference = d
                    since,a_3 = 5
              &a_7 = 9
                   Or, a+(7-1)d=9
              Subtracting (1) & (2), we get
               a+6d-a-2d = 9-5
                or, 4d = 4
                 Or, d=1
              Putting d=1 in eq. (1), we get
                  a+2\times1 = 5
```

Q 3 Find the common difference of an A.P. whose first term is ½ and the 8th term is <u>17</u>. Also write its 4th term.

Sol.3 Here, first term (a) =
$$\frac{1}{2}$$

and eighth term $a_8 = \frac{17}{6}$
 $\Rightarrow a + 7d = \frac{17}{6} \Rightarrow \frac{1}{2} + 7d = \frac{17}{6}$
 $\Rightarrow 7d = \frac{17}{6} - \frac{1}{2} = \frac{14}{6} \Rightarrow d = \frac{1}{3}$
Now, $a_4 = a + 3d = \frac{1}{2} + 3 \times \frac{1}{2} = \frac{1}{2} + 1 = \frac{3}{2}$

Q4. Find the sum of integers between 100 and 200 that are divisible by 9.

Integers divisible by 9 between 100 and 200 are 108, 117, 126, 135,198

$$a_n = 198$$
 $a + (n-1)d = 198$
 $108 + (n-1)9 = 198$
 $(n-1)9 = 90/9$
 $(n-1) = 10$
 $n = 11$

Now
 $S_n = \frac{n}{2}(a + a_n)$
 $S_{11} = \frac{11}{2}(108 + 198) = \frac{11}{2}x \ 306 = 1683$
 $\frac{1}{2} = \frac{11}{2}(4 \ Marks)$

Q1 If the numbers x-2, 4x-1 and 5x+ 2 are in A.P. Find the value of x.

Ans.12

```
Sol. x-2, 4x-1 and 5x+2 are in A.P.

⇒ (4x-1)- (x-2) = (5x+2) - (4x-1)

⇒ 4x-1-x+2 = 5x+2- 4x+1

⇒ 2x=2

⇒ x=1
```

Q2. Determine the AP whose 3rd term is 16 and when fifth term is subtracted from 7th term, we get 12.

Q3. Find the sum of the first 31 terms of an AP. Whose n^{th} term is given by 3 + 2n/3.

1) Given
$$a_n = 3 + 2n/3$$

Put $n = 1$, 2, 3
 $a = 11/3$, $a_2 = 13/3$, $a_3 = 15/3$ and so on
therefore $a = 11/3$ and $d = 13/3 - 11/3 = 2/3$
 $S_n = n/2[2a + (n-1)d]$
 $= 31/2[2X11/3 + 30X2/3]$
 $= 31/2[22/3 + 60/3]$
 $= 31/2X82/3$
 $= 1271/3 (Ans)$

Q4. If the 8th term of an A.P is 31 and 15th term is 16 more than the 11th term, find the A.P.

1. Let a be the first term and d be the common difference of the A.P.

$$a_8 = 31$$
 and $a_{15} = 16 + a_{11}$