Downloaded from www.studiestoday.com

Delhi Public School, Jammu Session 2014-15

Class - X

Sub:- Mathematics

Topics:- Trigonometry & Similar Triangles

Q1: If tan A =
$$\sqrt{2} - 1$$
, show that sinA cos A = $\frac{\sqrt{2}}{4}$

Q2: Evaluate
$$1 - \sin^2 \sin^2 30^{\circ} \cos^2 45^{\circ} + 4 \tan^2 30^{\circ} + \frac{1}{2} \sin^2 90^{\circ} - 2\cos^2 90^{\circ} + \frac{1}{24} \cos^2 0^{\circ}$$

Q3: P.T
$$\frac{\cos(90-\theta)\sec(90-\theta)\tan\theta}{\csc(90-\theta)\sin(90-\theta)\cot(90-\theta)} + \frac{\tan(90-\theta)}{\cot\theta} = 2$$

Q4:
$$sec^4\theta - sec^2\theta = tan^4\theta + tan^2\theta$$

Q5:
$$\sqrt{sec^2\theta + cosec^2}\theta = tan\theta + cot\theta$$

- Q6: Through the midpoint m of the side CD of a parallelogram ABCD , the line BM is drawn intersecting AC in L and AD produced in E . Prove that EL = 2BL.
- Q7: If two triangles are equiangular , prove that the ratio of the corresponding side is same as the ratio of corresponding altitudes .
- Q8: ABC is a right Δ at C. let BC = a, CA = b and AB = c, and let 'P' be the perpendicular from C and AB. Prove that (i) pc = ab (ii) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$
- Q9: In an equilateral Δ with side 'a' prove that a) Altitude = $\frac{a\sqrt{3}}{2}$ b) Area = $\frac{\sqrt{3}}{4}$ a^2
- Q10: A man goes 15m due west and 8m due north . How far is he from the starting point .